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Abstract. We have developed a framework for identifying causal relationships 

between events which are effective in the sense that they can be put to practical 

use, without regard to what the “true” causes really are. A rapid causal learning 

process is devised for temporally correlated events that can be observed proxi-

mally which is sufficient for the learning of many causalities involving basic 

physical and social phenomena. The system relies on a diachronic aspect of 

causes which is a characterization of consistent temporally correlated events 

and a synchronic aspect of causes which is a characterization of the contextual 

factors that enable the diachronic causal relations. The causal learning method 

is applied to some problem solving situations that allows some basic knowledge 

to be learned rapidly and that results in drastic reductions of the search space 

and amount of computation involved. This method is necessary to jump start the 

chain of causal learning processes that allow more complex and intricate causal 

relationships to be learned based on earlier knowledge. 

1 Introduction 

Being able to establish causality is critical to a cognitive system’s survival and proper 

functioning and is the most important foundation upon which a cognitive system 

structures its intelligent behavior. However, various research seems to suggest that 

there is no simple algorithm that is available that can easily and quickly establish 

causality between two events [1, 2, 3]. One key problem is as follows. Suppose a 

correlation is detected between two events A and B. It can be argued (and often it may 

be the case) that there exists a yet to be observed third event, C, that causes A and B 

separately and hence the correlation is not due to A causing B directly. A celebrated 

example is the issue of whether smoking causes lung cancer. Even if a correlation 

between smoking and cancer is established, one can argue (and many a tobacco com-

pany had raised the point) that perhaps there is a gene that causes people to like smok-

ing and that it also causes lung cancer [2]. Often, domain specific knowledge needs to 

be brought to bear for the establishment of causality [1, 2]. However, there is a chick-

en-and-egg problem: the learning and acquisition of some commonsensical domain 

knowledge which encodes fundamental rules/models of the world, both physical and 

social, requires the establishment of causality between some fundamental physical 

events (e.g., push something and it will move) or social events (e.g., yell out loud and 

everyone will turn to look at you immediately) to start with. Therefore, by appealing 

to domain knowledge only begs the question of the origin of this knowledge. 
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In our previous papers [3, 4] we proposed a paradigm of research in which an 

adaptive autonomous agent would, starting from no prior knowledge, interact with the 

environment and extract causal rules of behavior between physical/social causes and 

physical/social objects on an ongoing and rapid basis. How is this achievable? 

We propose a method that is sufficient to allow some very fundamental causality – 

e.g., those involving physical laws – to be learned. These acquired commonsensical 

domain knowledge could then support the subsequent learning of increasingly com-

plex and intricate causalities. We then illustrate how the application of this basic 

causal learning process can vastly reduce the computational effort involved in solving 

two AI problems – the “spatial movement to goal” and “crawling robot” problems [6]. 

2 Motivational Considerations 

Important insights can be gained on the issue of causality by returning to the very root 

of what causality means and what it can do for us. Consider a simple example of, say, 

using a remote control to control a toy car. Suppose this pair of objects is given to a 

child or is picked up by a primitive person in the jungle, both of whom have no prior 

domain knowledge on the devices. By playing with the joystick on the remote control 

and observing the effects it has, say, on the wheels of the toy car, they can easily and 

quickly establish the causality between a certain movement of the joystick (an event) 

and the way the wheels turn (another event) based on the temporal correlation ob-

served, much like they would learn very quickly about lightning and thunder. Some-

one observing them carrying out the acts can also easily observe the correlation and 

hence deduce the causality. 

However, one can still posit the possibility that there is a third event, perhaps an 

action of “God,” that causes the person to push the joystick on the remote control in a 

certain direction and also causes the turning of the wheel of the car accordingly every 

time. Therefore, strictly speaking, one still cannot conclude that the person’s certain 

action is the true cause of a certain turning behavior of the wheel. How then can a 

cognitive system even begin to learn some very fundamental causalities to start with? 

We believe it is useful to define a concept called effective causality that supports 

the learning of fundamental causal knowledge. In the case of the remote control and 

the car, in the absence of other observable possible causes (such as a “God”), it can be 

assumed that if there is a consistent temporal relationship between the joystick event 

and the wheel event, the joystick event is the effective cause of the wheel event. 

Whether there is an underlying “true cause” such as an unobservable “God” does not 

matter. The effective causal rule serves a practical purpose for the system to be able to 

predict the consequence of its action. Of course, the rule may cease to be valid later 

which is fine because the system then learns other new rules rapidly. 

Similarly, in the case of smoking and lung cancer, if one’s purpose is a practical 

one of, say, avoiding a mate who has a high chance of getting cancer, then the exist-

ence of the correlation is sufficient, whether smoking is “really” the cause does not 

matter, unless one’s purpose is to establish a case against the tobacco companies. 



The correlation between the remote control and toy car is also a lot easier to detect 

than that between smoking and lung cancer. This is because the remote control and 

toy car’s behaviors are observed by the person (or the observer observing the person 

controlling the remote control) directly in a proximal manner. Provided their senses 

can be trusted, the correlation is easily established. Of course, there could be occa-

sional noise – such as the coincidental movements of other objects around - but they 

can be weeded out fairly quickly by one or two more tries at the pushing of the joy-

stick in the same direction – these coincidental events are not likely to recur. Thus, in 

the case of smoking and lung cancer, if an observer is able to observe the interaction 

of the smoke particles and the lung cells directly, the correlation would be much more 

easily established. Otherwise, more complex statistical analysis is needed [2, 3]. 

We term the effective cause of an event arising from temporal correlation a dia-

chronic cause. There is yet another aspect of effective causality: there are “enabling” 

contextual factors that enable the temporal correlation between two events, without 

which the temporal correlation will not exist. E.g., when on Earth the law of gravity 

holds – that an object, when let go (an event), will fall to the ground in the next in-

stance (another event). We identify these factors as synchronic causes. 

We shall consider the example of gravity more closely in connection with the iden-

tification of synchronic causes. Actually when humans first encountered the phenom-

enon of gravity, because it took place in practically any context/background on Earth, 

our original conception was that it was ubiquitous and the background did not matter. 

Hence we first characterized gravity as applicable everywhere. Later we discovered 

that there are situations in outer space in which gravity can become reduced or non-

existent. We then modified the concept of gravity to be applicable everywhere on 

Earth (the context) in its full strength – we bring back the context/background that we 

have ignored earlier. Therefore we happily applied the effective causal rule (that all 

objects would fall when not supported, in any context) for most of humanity’s exist-

ence, using it to successfully support our survival until a new rule was discovered. 

This is the way we will handle the discovery and characterization of synchronic caus-

es – the enabling contextual factors to be described in Section 3.2. The physicist Lee 

Smolin [7] believes that all physical theories are effective and approximate that apply 

to “truncations” of nature and that cover only a limited domain of phenomena. This 

echoes our idea of effective causality. 

3 An Effective Causal Learning Framework 

In the spirit of the discussion above, we divide the identification of causes into the 

two major aspects: the diachronic and the synchronic aspects. For the current paper, 

we consider only deterministic situations in which a diachronic cause must always 

bear a consistent temporal relationship with the effect and a synchronic cause must 

always be present. Considerations of probabilistic situations are relegated to a future 

paper. Our focus in this paper would be to show the application of the basic causal 

learning framework which is sufficient to drastically reduce search efforts in some 

problem solving situations. 



3.1 The Identification of Diachronic Causes 

We begin by considering a simple situation in which a few simple events (changes of 

states) can be directly (proximally) observed to take place as shown in the left dia-

gram in Fig. 1. These events consist of Appearances and Disappearances of the three 

objects 11, 12, and 13 at some locations L1, L2, and L3 respectively which we will 

represent as App(object, location) and Disapp(object, location) respectively. In the 

right of Fig. 1 is a temporal diagram in which the horizontal axis is time represented 

discretely as a succession of “time frames” t1, t2, … etc. and the vertical axis lists the 

presence of the objects with the associated parameters - the locations at which they 

appear when they appear - at the corresponding time frame. So, say, in t1 there is no 

object present and in t2 object 11 appears at L1. The change from t1 to t2 is noted (as 

a gray vertical bar). (An event could be the change of the existential or other states of 

an object or the change of some parameters such as the location or the energy level 

associated with an object - e.g., Move(11, L1, L2): object 11 moves from location L1 

to location L2).  In general, whenever there is a change, the system would look for a 

“cause” – some changes that happened earlier in time. However, because this is the 

first change since the beginning of “time” in this “mini-universe,” it is assumed that 

either there is no cause or the cause is before the current temporal interval (e.g., a 

“first cause” such as “God” that exists outside the current space-time continuum.) 

 

Fig. 1. Diachronic causes. See text for explanation. 

Henceforth we will refer to a causal rule as one that links an event as a diachronic 

cause (e.g., App(11, L1)) and another event as a diachronic effect (e.g., App(12, L2)), 

denoted as App(11, L1)  App(12, L2), if such a causal connection exists. Looking 

at Fig. 1, one can see that there is a consistent correlation between App(12, L2) and 

App(13, L3) (with a delay of 2 time frames) because it happens twice. We require at 

least two consistent correlations before we construct the causal rule in order to weed 

out noise – this is called “dual instance consideration.” (In a probabilistic formulation, 

we can define “rule-confidence” in terms of the number of consistent instances ob-

served.) Therefore, App(11, L1)  App(12, L2) and App(11, L1)  App(13, L3) do 

not hold as they each happens only once. There is also a causal rule App(13, L3)  

Disapp(13, L3) that holds that is a “self-causal” rule – it predicts that an object will 

disappear after a certain amount of time of its appearance (e.g., a timer controlling a 

light). But if that correlation exists, then the rule App(12, L2)  Disapp(13, L3) will 

also follow as indicated in the figure. Without further knowledge or proximal obser-

vations (i.e., of a timer mechanism), App(12, L2) can be taken as the underlying cause 



of both App(L3) and Disapp(L3) and the situation is similar to C being the underlying 

cause of the correlation of A and B discussed in the Introduction section. 

The ability to weed out noise through dual instance consideration is dependent on 

how “busy” the environment is – how many events are happening in a given time 

period. If the scenario is very busy, say with millions of events happening in a small 

temporal interval, the number of instances involved may have to be increased to re-

move spurious correlations. But the dual instance consideration should suffice for our 

ordinary environment. Also, in the event that the cognitive systems is in a desperate 

need to look for a cause of something so as to be able to bring about or repeat an ear-

lier observed effect, it may relax the dual instance consideration – it may try its luck 

and apply those temporal correlations that have been observed only once. 

In the event that more than one diachronic causes are identified, they are encoded 

as conjunctive diachronic causes. Subsequent observations will identify whether they 

are really conjunctive causes – i.e., if one is subsequently observed to be absent and 

the effect does not ensue - or they are disjunctive diachronic causes – any one of them 

happening will give rise to the effect. 

3.2  The Identification of Synchronic Causes 

We consider the simple events in Fig. 2 (similar to Fig. 1) to illustrate the idea of 

synchronic causes as discussed above. In Fig. 2, the duration of the 11 event is short-

ened and a new 14 event is introduced as shown. Now, had object 11 been present “all 

the time” at location L1 as in Fig. 1, At(11, L1) would be considered a necessary syn-

chronic (contextual) cause for App(12, L2)  App(13, L3). (Currently there is anoth-

er entity that is a synchronic cause of App(12, L2)  App(13, L3), which is the loca-

tion associated with App(12, L2) - At(12, L2)). In Fig. 2, however, because only ei-

ther 11 or 14 is present at their corresponding locations at the time when App(12, L2) 

happens (shown in two dashed rectangles), the presence of both 11 and 14 are tenta-

tively considered not to be the synchronic causes accompanying App(12, L2)  

App(13, L3), in the same spirit as the gravity example discussed in Section 2. 

However, this tentative removal of the presence of 11 and 14 as synchronic causes 

of App(12, L2)  App(13, L3) will be reverted as soon as another event 12 takes 

place (say, outside the time frame shown in Fig. 2) in the absence of 11 and 14, and 

13 fails to take place after 2 time intervals. This shows that the presence of 11 or 14 

were indeed needed for App(12, L2) to cause App(13, L3). The system then modifies 

the already learned causal rule App(12, L2)  App(13, L3) to include At(11, L1) or 

At(14, L4) as its accompanying disjunctive synchronic causes, in conjunction with 

At(12, L2) (i.e., At(12, L2) and (At(11, L1) or At(14, L4)). 

Suppose A, B, C, D, E, … are synchronic causes, the above method can recover 

complex conjunctive/disjunctive combinations of these such as A and (B or C) or (D 

and E).... A dense collection of disjunctive synchronic causes that are parameter val-

ues (e.g. L1 = 1.1 or 1.2 or 1.3 or 1.4…) can be combined into a sub-range of values 

(e.g. 1.1 < L1 < 1.9). In the case of gravity discussed in Section 2, the disjunctive 

“sum totality” of each context (synchronic cause) on Earth in which gravity applies is 

the context of the entire Earth. 



 

 
 

Fig. 2. Synchronic causes. See text for explanation. 

4 Application of Causal Learning to Problem Solving 

In this section, we discuss two examples in which the effective causal framework can 

be used to drastically reduce the amount of computation in problem solving situations. 

One example is the typical spatial movement to goal problem and the other is the 

crawling robot problem [6]. Typically, the A* [8] or best-first search process is used 

for the spatial movement to goal problem and reinforcement learning is used for the 

crawling robot problem [6, 9]. In both cases, no causal characterizations of the ac-

tions involved are learned or extracted in the processes, resulting in relatively “blind” 

searching processes that require a large amount of computation. We show that our 

framework developed above discovers/learns causal rules of various actions involved 

in the search process that have general and wide applicability that can result in a dras-

tic reduction of the search space involved. 

4.1 The Spatial Movement to Goal Problem 

Consider the spatial movement to goal problem - a cognitive system starting from a 

point in space and trying to reach a physical point (the GOAL) some distance away 

(Fig. 3). Using, say, the best-first search to solve the spatial movement to goal prob-

lem, a domain independent heuristic is typically used such as the “shortest distance to 

goal” heuristic. However, with this heuristic, one still needs to expand many nodes at 

each level of the search to compute the heuristic value in order to select the one with 

the minimum value for the next level of expansion. It is possible to use a domain de-

pendent heuristic – always head straight toward the GOAL – and obviate the need to 

expand many nodes. However, building in this heuristic will be too contrived. Is there 

a domain independent method that allows the system to discover this domain depend-

ent heuristic? Our effective causal learning algorithm described in Section 3 provides 

just such a domain independent mechanism to learn this piece of knowledge – a man-

ner of applying an elemental force that causes the “shortest distance to the goal” to be 

achieved. (Here we assume that there are no obstacles between the cognitive system 



and the goal. Our effective learning framework can also handle the situation with 

obstacles that we relegate to a future paper.) 

Fig. 3 shows that in the first level of the best-first search process all the possible di-

rections of the applied force, F, is tried and the parameters associated with these “ex-

panded nodes” are kept track of. We assume that the parameters available to the 

“senses” of the cognitive system are: AL (its absolute location); RD (its relative dis-

tance to the GOAL – provided by, say, a vision system); AA (the absolute angle with 

respect to the entire reference frame in which the force is applied); and RA (the rela-

tive angle to the GOAL in degrees which is defined as 0 when the force is pointing 

directly at the GOAL). These parameters can potentially be the synchronic causes or 

diachronic effects accompanying the diachronic cause – the force. (At the moment the 

force is applied, if there are other objects around, there will also be parameters such as 

the relative distances and the force’s directions relative to these objects. However, 

given our current method, these factors would be ruled out quite rapidly within a few 

movements of the cognitive system and hence for simplicity without sacrificing gen-

erality, we omit these other parameters for the current discussion.) 

 

 
 

Fig. 3. Search with effective causal learning. F = Force; AL = Absolute Location; RD = Rela-

tive Distance (to GOAL); AA; Force Absolute Angle; RA = Force Relative Angle (to GOAL) 

 

In NODE1 the force goes from 0 (non-existent) to F (existent) and the parameters 

associated with the cognitive system – AL and RD – change in some manner after one 

time frame. (Assuming the force always takes one time frame to effect changes.) 

Those parameters that change are the diachronic effects of the force application. (AA 

and RA are undefined (“*” ) before and after the force application.) NODE3, in which 

the force F is applied with the parameter values AL = L1, RD = D1, AA = A3, and 

RA = 0, which is denoted as F(L1, D1, A3, 0), corresponds to the shortest distance to 

the GOAL. This node is selected for expansion. (At this stage the parameter values 

L1, D1, A3 and 0 are potential synchronic causes for the force event.) 

In the next level of expansion, F(L4, D4, A3, 0) would be the action that satisfies 

the shortest distance to goal heuristic. The causal learning algorithm then generalizes 

the required force to F(*, *, A3, 0), with the values of AL and RD now no longer 

potential synchronic causes to the action F that satisfies the shortest distance to goal 

heuristic (denoted as “*”) and the still relevant synchronic causes are AA = A3 and 

RA = 0. Hence after two levels of node expansion, the system no longer needs to 

expand the nodes corresponding to applying the force in all the other directions. It just 

needs to use F(*, *, A3, 0) to head straight to the GOAL. 



Suppose now the system finds itself in another START position that has a different 

absolute angular placement from the GOAL compared to that in the earlier experi-

ence. In this situation the F(*, *, A3, 0) will not work as now F applied in the A3 

absolute direction will not give rise to an RA = 0. The system therefore carries out the 

process again as above as described in Fig. 3 and in this second experience, after two 

levels of node expansion, it discovers, say, F(*, *, AX, 0) as the optimal way to apply 

the force at every step to the GOAL. As AX is not equal to A3, the absolute angle AA 

is then removed as a synchronic cause and the optimal force is F(*, *, *, 0), leaving 

RA = 0 as the only synchronic cause of the optimal force application – i.e., one that 

satisfies the shortest distance to goal heuristic. 

At this stage, the cognitive system has discovered the heuristic that basically says 

that no matter where the cognitive system is or how far it is from the GOAL, the op-

timal way to move it to the GOAL is to apply a force that aims directly at the GOAL. 

Thus, after two experiences and a total of 4 complete node expansions, the cognitive 

system learns a general causal rule that obviates all future needs for search for this 

spatial movement to goal (with no intervening obstacle) problem. 

4.2 The Crawling Robot Problem  

In Fig. 4 we consider a crawling robot problem [6]. Basically, the robot consists of a 
“body” and two independently movable arms (and their associated angles α and β) 
and the problem is to find a correct sequence of actions of the arms so that the robot 
will keeping moving “forward” or “backward.” 4 elemental actions are available to 
the robot: Increase/Decrease α/β. This is a situation in which the best-first search 
combined with the domain independent shortest distance to goal heuristic cannot be 
used as it is difficult to measure the “distance” between a current state from the goal 
of, say, Fwd(R)N (keeps moving forward – no backward movement at any time). 
Therefore reinforcement learning is often used for problems such as this [6, 9]. 

As can be seen from the previous section, there is an early “exploration” phase of 

the causal learning enhanced search process in which many possibilities are tried 

(many nodes expanded) and some general and powerful causal rules are discovered 

that obviate any further extensive search or node expansion altogether. On the other 

hand, even though there is also an exploration phase in a typical reinforcement 

learning process [6, 9], there is no attempt to extract the “causes” and powerful 

generalizations that characterize causal rules or “causal models.” What are learned are 

basically “state-transition models” with prescriptions of the best courses of actions in 

various states of the system to achieve a certain goal (e.g., Fwd(R)N). A huge amount 

of computation is typically needed in extensive exploration and exploitation phases in 

reinforcement learning. Reinforcement learning would fair even worse if all 

contextual factors are included as part of the current “state of the world” which are 

often removed a priori using domain knowledge. With our effective causal learning 

process, irrelevant contextual factors (potential synchronic causes) are weeded out in 

the process of constructing the causal rules as we have described above. 

Figs. 4(a), (b), (c), and (d) show different states of the robot arms and to the right 

of the robot is shown the corresponding general causal rules that govern its behavior 

in those states. (A computer program that simulates the robot’s behavior would 



conceivably have these rules in the program.) For example, in Fig. 4(a), using our 

parlance, the diachronic cause (action), Dec(β), would give rise to a diachronic effect, 

Fwd(R) (i.e., Dec(β)  Fwd(R)) in the presence of the synchronic causes Tch(A, FL) 

and β > 0. Inc(β)  not Tch(A, FL) and Dec(α)  not Tch(A, FL) (causing point A 

to not touch the Floor) share the same synchronic causes as Dec(β)  Fwd(R). Each 

of Dec(β), Fwd(R), etc. is an event. Tch(A, FL) can be a state or an event (when there 

is a state change from not Touch to Touch). Similarly for not Tch(A, FL). 

 

 

Fig. 4. The crawling robot problem. Tch = Touch; Dec = Decrease; Inc = Increase; Fwd = 

Forward; Bkwd = Backward; Dist = Distance; R = Robot; FL = Floor. A is the dangling end of 

the distal arm. β has positive values (β > 0) when the distal arm is swung to the “right” of the 

vertical dashed line and negative values (β < 0) when the arm is swung to the “left.” 

Hence, unlike “action-state” rules in reinforcement learning, the rules in Fig. 4 do 

capture the “causal understanding” of the robot’s behavior in its most general form. 

These rules are learnable using our causal learning method described above, with 

some minor extensions to the basic algorithm (e.g., handling of parameter ranges such 

as β > 0, β < 0, etc.). Once these causal rules are learned in a process of exploration 

(i.e., move the robot arms about and observe what events occur as a result) they can 

engender a rapid problem solving process through, say, a backward chaining process, 

beginning from a desired goal (e.g., Fwd(R)N – i.e., no Bkwd(R) is allowed at any 

given step - or Bkwd(R)N), with a drastically reduced search space. Incremental 

chunking [10] can further reduce the amount of search needed. 
In the interest of space, the detailed step-by-step causal learning and problem 

solving processes will not be described for this case. In the interest of clarity, Fig. 
4(b) omits an extra synchronic condition Dist(A, FL) > Δ. The complete version is 
shown in Fig. 4(e). Dist(A, FL) = (equal to) Δ is the condition just prior to a touching 
event – Tch(A, FL) when A is just slightly above the Floor – and an action Dec(β ) 
will lead to Tch(A, FL) – the rule in Fig. 4(f). There are two more similar rules 
corresponding to Fig. 4(d) that are not shown in Fig. 4. There are also a few other 
rules (e.g., a rule converting β < 0 to β > 0) that are not decribed here in the interest of 
space. Suffices it to say that they can all be discovered through the causal learning 
process. Part of the backward chaining process could make use of the shortest 



distance to goal heuristic similar to that discussed in Section 4.1 – that to get a point 
to touch another point, select the action that brings it Nearer the point.  

5 Conclusion and Future Work 

In summary, this paper proposes a method that relies on the effective use of temporal 

correlation and proximal observation for a process of rapid causal learning that can 

learn the causal rules that obtain between basic physical and social events and the 

method is applied to two physical problem solving situations. The learning is carried 

out in a stage of “exploration” and subsequent problem solving can proceed rapidly 

with the learned causal rules. This method is necessary to jump start a chain of causal 

learning processes – it first allows the fundamental physical and social knowledge of 

the world to be learned and then the learned domain dependent knowledge can subse-

quently assist the learning of other more complex causal relationships. 

In this paper we use parameters (such as location, relative distance, etc.) that are 

easily available through the sensory input. More complex concepts may come into 

play as diachronic and synchronic causes. An extension of the basic framework would 

be to handle probabilistic events. 
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