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Abstract. In order to explore the practical manifestations of the “cog-
nitive synergy” between the PLN (Probabilistic Logic Networks) and
ECAN (Economic Attention Network) components of the OpenCog AGI
architecture, we explore the behavior of PLN and ECAN operating to-
gether on two standard test problems commonly used with Markov Logic
Networks (MLN). Our preliminary results suggest that, while PLN can
address these problems adequately, ECAN offers little added value for
the problems in their standard form. However, we outline modified ver-
sions of the problem that we hypothesize would demonstrate the value
of ECAN more effectively, via inclusion of confounding information that
needs to be heuristically sifted through.

1 Introduction

One approach to creating AGI systems is the “integrative” strategy, involving
combining multiple components embodying different structures or algorithms,
and relying on synergistic dynamics between components. One kind of integrative
system involves various highly independent software components, each solving
a specialized set of problems in a mostly standalone manner, with occasional
communication between each other in order to exchange problems and solutions.
On the other end of the scale, are systems designed as tightly interconnected
components that give rise to complex non-linear dynamical phenomena. Here,
we are specifically focused on the latter approach. We will discuss the particulars
of one form of cognitive synergy – between probabilistic inference and nonlinear-
dynamical attention allocation – within the context of one particular integrative
AGI architecture, OpenCogPrime [2].

2 OpenCogPrime

Our work here is based upon specific details of the AGI architecture called
OpenCogPrime (OCP), based on the open-source OpenCog project at http:
//opencog.org. OCP is a large and complex system whose detailed description
occupies two volumes [4].



The concept of cognitive synergy is at the core of the design, with highly in-
terdependent subsystems responsible for inference regarding patterns obtained
from visual, auditory and abstract domains, uncertain reasoning, language com-
prehension and generation, concept formation, and action planning.

The medium-term goal of the OCP project is to create systems that can
function broadly comparably to young human children in virtual and robotic
preschool contexts [3]. In the longer-term, the aim of the project is to engi-
neer systems that exhibit general intelligence equivalent to a human adult, and
ultimately beyond.

The dynamics of interaction between processes in OCP is designed in such
a way that knowledge can be converted between different types of memory;
and when a learning process that is largely concerned with a particular type
of memory encounters a situation where the rate of learning is very slow, it
can proceed to convert some of the relevant knowledge into a representation
for a different type of memory to overcome the issue, demonstrating cognitive
synergy. The simple case of synergy between ECAN and PLN explored here is
an instance of this broad concept; PLN being concerned mainly with declarative
memory and ECAN mainly with attentional memory.

3 Probabilistic Logic Networks

PLN serves as the probabilistic reasoning system within OpenCog’s more general
artificial general intelligence framework. PLN logical inferences take the form of
syllogistic rules, which give patterns for combining statements with matching
terms. Related to each rule is a truth-value formula which calculates the truth
value resulting from application of the rule. PLN uses forward-chaining and
backward-chaining processes to combine the various rules and create inferences.

4 Economic Attention Networks

The attention allocation system within OpenCog is handled by the Economic At-
tention Network (ECAN). ECAN is a graph of untyped nodes and links that may
be typed either HebbianLink or InverseHebbianLink. Each Atom in an ECAN is
weighted with two numbers, called STI (short-term importance) and LTI (long-
term importance), while each Hebbian or InverseHebbian link is weighted with a
probability value. A system of equations, based upon an economic metaphor of
STI and LTI values as artificial currencies, governs importance value updating.
These equations serve to spread importance to and from various atoms within the
system, based upon the importance of their roles in performing actions related
to the system’s goals.

An important concept with ECAN is the attentional focus, consisting of those
atoms deemed most important for the system to achieve its goals at a particular
instant. Through the attentional focus, one key role of ECAN is to guide the
forward and backward chaining processes of PLN inference. Quite simply, when
PLN’s chaining processes need to choose logical terms or relations to include



in their inferences, they can show priority to those occurring in the system’s
attentional focus (due to having been placed there by ECAN). Conversely, when
terms or relations have proved useful to PLN, they can have their importance
boosted, which will affect ECAN’s dynamics. This is a specific example of the
cognitive synergy principle at the heart of the OpenCog design.

5 Evaluating PLN on Standard MLN Test Problems

In order to more fully understand the nature of PLN/ECAN synergy, we chose
to explore it in the context of two test problems standardly used in the context
of MLNs (Markov Logic Networks) [7]. These problems are relatively easy for
both PLN and MLN, and do not stress either system’s capabilities.

The first test case considered is a very small-scale logical inference called the
smokes problem, discussed in its MLN form at [1]. The PLN format of the smokes
problem used for our experiments is given at https://github.com/opencog/

test-datasets/blob/master/pln/tuffy/smokes/smokes.scm.

The conclusions obtained from PLN backward chaining on the smokes test
case are

cancer(Edward) <.62, 1>

cancer(Anna) <.50, 1>

cancer(Bob) <.45, 1>

cancer(Frank) <.45, 1>

which is reasonably similar to the output of MLN as reported in [1],

0.75 Cancer(Edward)

0.65 Cancer(Anna)

0.50 Cancer(Bob)

0.45 Cancer(Frank)

The second test case is a larger problem referred to as RC involving the place-
ment of research papers in categories based on information about their authors
and citations. [5] The full RC problem contains 4 relations, 15 rules, 51K enti-
ties, 430K evidence tuples, 10K query atoms, 489 components [6]. The RC1000
problem is scaled-down with only 1000 pieces of evidence. Human raters display
72% agreement on mapping papers into categories. Straightforward statistical
methods can get up to 66%, and MLN does roughly the same.

The full set of rules and evidence used for feeding the RC problem to PLN is at
https://github.com/opencog/test-datasets/tree/master/pln/tuffy/class.
The corresponding information for the RC1000 problem is at https://github.
com/opencog/test-datasets/tree/master/pln/tuffy/rc1000.



6 Exploring PLN/ECAN Synergy with Standard MLN
Test Problems

We explored the possibility of utilizing ECAN to assist PLN on these test prob-
lems, so far achieving results more educational than successful. Based on our
work so far, it seems that ECAN’s guidance is not of much use to PLN on these
problems as formulated. However, exploring ways to modify the test problems
so as to enable to them to better showcase ECAN, led us to conceptually inter-
esting conclusions regarding the sorts of circumstances in which ECAN is most
likely to help PLN.

We hypothesize that if one modified the smokes example via adding a sub-
stantial amount of irrelevant evidence about other aspects of the people involved,
then one would have a case where ECAN could help PLN, because it could help
focus attention on the relevant relationships. We also hypothesize that, if one
had information about the words occurring in the papers in the RC test problem,
then ECAN could help, because some of these words would be useful for guess-
ing the categories papers belong to, and others would not; ECAN could help via
spreading importance from words found to be important, to other related words,
saving PLN the trouble of attempting inferences involving all the words. One of
our threads of current research focuses on the substantiation of these hypotheses
via running PLN and ECAN together on test problems of this nature.

In sum, the exploration of some standard MLN test problems in a PLN/E-
CAN context has led us to interesting hypotheses regarding where ECAN can,
and cannot, prove useful to PLN. Preliminarily, it appears that this particular
cognitive synergy is going to be most useful in cases where, unlike these MLN
test problems in their standard form, there is a considerable amount of detailed
information and part of the problem involves heuristically sifting through this
information to find the useful bits.
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