A Cognitive API and its Application to AGI
Intelligence Assessment

Ben Goertzel' & Gino Yu?

! OpenCog Foundation, ? School of Design, Hong Kong Poly U

Abstract. An Application Programming Interface for human-level AGI
systems is proposed, aimed at bridging the gap between proto-AGI R&D
systems and practical Al application development. The API contains
simply formalized queries corresponding to the various key aspects of
human-like intelligence, organized so as to be independent of the algo-
rithms used under the hood for query resolution and associated support-
ing cognitive processes. A novel, qualitative (and in principle quantifi-
able) measure of software general intelligence is proposed (the APIQ),
measuring the degree to which a system succeeds at fulfilling the various
API functions using a compact set of representations and algorithms.

1 Introduction

Currently AGI is a relatively distinct pursuit from the engineering of practical
AT applications. Indeed, the two pursuits can even sometimes seem opposed
to each other. If one posits an ”AGI vs. Narrow AI” dichotomy [1], focus on
specific practical applications may be seen as one of the primary factors driving
the majority of the AT field’s attention toward Narrow AI (other major factors
including the greater ease of doing theoretical analysis and empirical testing on
narrower systems).

On the other hand, it’s also the case that a number of proto-AGI systems
have been customized, in whole or in part, to serve as parts of various practical
applications. But this has been done on an ad hoc basis in each case, with
considerable specialized effort required. I believe it is possible to connect the AGI
and application development worlds more systematically, so that AGI R&D and
AT application development can proceed more synergistically, each more richly
benefiting the other.

One way to manifest this potential, I suggest, is the development of a ”Cog-
nitive API” for a proto-AGI software system, enabling application developers to
access the system in specific ways that tend to be useful for application software,
according to an interface that requires no knowledge of the underlying algorithms
of the proto-AGI system, and doesn’t change as the particulars of these algo-
rithms change. Adoption of such an API would lead to more users for early-stage
AGI systems, hence to more incentive for various organizations to fund or spon-
sor work on AGI systems, and thus could accelerate AGI development as well as
improving application quality.



In this paper I will outline one approach to defining a Cognitive APT of this
nature. While the APT indicated here would work effectively with the OpenCog
framework that the author is currently involved with [5] [6], in its overall outline
it is not OpenCog-specific in any way, and could be used just as well together
with many alternative AGI systems.

The pursuit of a Cognitive API also provides a novel perspective on one of the
vexing issues at the heart of the AGI field — the difficulty of measuring the level
of general intelligence displayed by a given system. A novel intelligence measure,
the APIQ, is proposed and defined. Roughly speaking the APIQ measures the
degree to which a system fulfills a broad subset of the API functions using a
concise set of representations and algorithms. Full formalization of the APIQ
appears difficult, but it does provide a novel, and highly pragmatic, approach
to conceptualizing the notion of general intelligence in the context of real-world
applied software systems.

1.1 Needs of Application Developers vs. AGI Researchers

A key point underlying the current suggestion is that the needs of AGI re-
searchers, versus application developers aimed at using early-stage AGI software
in their applications, are substantially different.

For a developer whose focus is the creation or improvement of Al algorithms,
the appropriate interface for an Al system is one that is extremely general and
flexible, providing the maximum possible latitude in experimenting with new
ideas and increasing the intelligence, scope and/or efficiency of existing code.
For example: While rough around the edges in various places, OpenCog’s current
Scheme shell is a reasonable first approximation of an interface of this sort.

On the other hand, for a developer whose focus is the creation of Al-based
application systems, a different sort of interface is appropriate an Application
Programming Interface or API that supplies a limited but powerful set of appli-
cation functionalities, in a manner providing: a) Simplicity of access to the Al
functionalities commonly required by application developers; b) for each func-
tionality, either a reliable level of intelligence, or a reliable confidence level associ-
ated with each output (indicating the systems assessment of its own confidence
in the intelligence of its output in a given instance); c¢) robustness as a soft-
ware system, when carrying out the specific application functionalities directly
accessible by the API.

2 Representation

It seems inescapable that a Cognitive API will need to be associated with a
flexible knowledge representation language. For instance, if a cognitive API were
to be realized using OpenCog, then the representation language would be the
language of the Atomspace, OpenCog’s weighted, labeled hypergraph knowledge
representation, e.g. as realized via the Scheme representation now commonly
used to load Atoms into the Atomspace.



In general, one wants a KR (Knowledge Representation) language that is
highly general, and is reasonably easily both human and machine readable. The
bulk of the API indicated here, which comprises a set of queries to be made of a
cognitive system, assumes the existence of a KR that can straightforwardly be
used to provide descriptions of the following entities, for use in input and/or out-
put of queries: actions, agent, bodies, categories, communication media, commu-
nications, constraints, datasets, expressions, events, maps, movements, object,
patterns and situations.

Another relevant factor is standardization of concepts referenced in queries.
For a cognitive system to have a better chance of understanding a users queries,
it will be easier if the user poses his knowledge in terms of standard ontologies
wherever relevant and feasible, e.g. WordNet [3] and ConceptNet [10].

3 Queries

The wiki page http://wiki.opencog.org/w/A_Cognitive_API comprises crit-
ical supplementary information to this paper, and presents a set of queries that
we suggest a cognitive API should support. The set of queries is designed to cover
all the key aspects of human-like intelligence, as identified in the AI Magazine
paper [1] summarizing the conclusions of the 2009 AGI Roadmap Workshop.
For each core category of human-intelligence functionality as identified there, a
handful of essential questions is identified. And, each of these essential questions
may be cast as a formal API call. While a lot more work would need to go
into honing a formal APT along these lines, first-draft ” API call” versions of the
questions are given here, for the clarity that this sort of concreteness brings.

For concreteness we give here three arbitrary examples from the long, struc-
tured list on the above wiki page (* denotes an optional argument):

— FEzpression-List GetTemporalPatterns(Situation-List S): what temporal pat-
terns exist in a certain set of situations?

— DirectAttention(Entity X, *Time T): instructs a cognitive system to focus
its attention on a certain entity for a certain time period

— GetAssociatedEmotions(Entity X, *Situation S, *Time T): finds the emo-
tions associated with a certain entity

4 An Application-Oriented Measure of General
Intelligence

The notion of a Cognitive API also has implications in the area of AI intelli-
gence assessment. Quantification of general intelligence levels poses a significant
challenge for the AGI field, to which various approaches have been suggested [8]
[9] [7] [4] [2] [1]. The Cognitive API proposed here suggests a different approach,
an ”APIQ” that measures the degree to which a software system can carry out
a broad variety of humanly useful, intelligent-seeming functions using a small
class of representations and mechanisms.



Suppose that, for each of the queries in the API: a) one has identified a
measure of the quality of performance of a given software system at responding
to that query, scaled between 0 and 1; b) one has a meaningful qualitative (or
formal) way to identify the different representations and algorithms in a given
software system; c) for each of these representations and algorithms, and each
APIT query, one can quantify the degree to which the representation/algorithm
plays a role in the response to the query, with some degree between 0 and 1. Then
one can estimate the total API quality of a system as the sum of the performance
quality the system displays on each API query; and the query API generality of
a system as the entropy of the set of performance quality values displayed by
the system on the API queries. One can also estimate, for each representation or
algorithm, the total contribution, defined as the sum over all API queries of: the
system’s performance quality on the query, multiplied by the degree to which
the representation/algorithm plays a role in the query; and the component API
generality, defined as the entropy of the set of total contribution values, across
all the representations/algorithms.

The applied human-level general intelligence of a system, then, can be
defined roughly as (where a, b, ¢ are nonnegative weight values summing to 3)

APIQ = total API quality® « API generality” * component API generality®

References

1. Adams, S., Arel, 1., Bach, J., Coop, R., Furlan, R., Goertzel, B., Hall, J.S., Sam-
sonovich, A., Scheutz, M., Schlesinger, M., Shapiro, S.C., Sowa, J.: Mapping the
landscape of human-level artificial general intelligence. Artificial intelligence Mag-
azine (2011)

2. Bringsjord, S., Schimanski, B.: What is artificial intelligence? psychometric ai as
an answer. In: IJCAI. pp. 887-893 (2003)

3. Fellbaum, C.: WordNet: An Electronic Lexical Database. Addison-Wesley (1990)

4. Goertzel, B.: Toward a formal definition of real-world general intelligence. In: Pro-
ceedings of AGI-10 (2010)

5. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence,
Part 1: A Path to Advanced AGI via Embodied Learning and Cognitive Synergy.
Springer: Atlantis Thinking Machines (2013)

6. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part
2: The CogPrime Architecture for Integrative, Embodied AGI. Springer: Atlantis
Thinking Machines (2013)

7. Hernandez-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an
anytime intelligence test. Artificial Intelligence Journal 174 (18): 15081539 (2010)

8. Legg, S., Hutter, M.: A definition of machine intelligence. Minds and Machines 17
(2007)

9. Legg, S., Veness, J.: An approximation of the universal intelligence measure. CoRR
abs/1109.5951 (2011)

10. Speer, R., Havasi, C.: Conceptnet 5. Tiny Transactions of Computer Science (2012),
http://tinytocs.org/voll/papers/tinytocs-vl-speer.pdf



