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Relation between RL and AI

einforcement Learning Framewor
Very general: covers most/all AT problems

Artificial
Intelligence

Statistical
Machine Learning

RL Problems
& Algorithms

Traditionally
deterministic,
known world /
planning problem

Mostly i.i.d. data
classification,

regression,
clustering

Stochastic,
unknown,
non-i.i.d.
environments




Some Applications of RL

Checkers (Samuel, 1959)
= first use of RL in an interesting real game
(Inverted) helicopter flight (Ng et al. 2004)
= better than any human
Computer Go (UCT, 2006)
= finally some programs with "reasonable” play
Robocup Soccer Teams (Stone & Veloso, Reidmiller et al.)
= World's best player of simulated soccer, 1999; Runner-up 2000
Inventory Management (Van Roy, Bertsekas, Lee & Tsitsiklis)
= 10-15% improvement over industry standard methods
Dynamic Channel Assignment (Singh & Bertsekas, Nie & Haykin)

= World's best assigner of radio channels to mobile telephone calls  Arcade Learing Enivornment
Nadaf 2010, Bellamare et al.

Elevator Control (Crites & Barto) 2012, .. on-going challenge)
= (Probably) world's best down-peak elevator controller

Many Robots

= havigation, bi-pedal walking, grasping, switching between skills...

TD-Gammon and Jellyfish (Tesauro, Dahl)
= World's best backgammon player. Grandmaster level




Complete Agent

Temporally situated

Continual learning and planning

Object is to affect the environment
Environment is stochastic and uncertain

Environment




What is Reinforcement Learning?

An approach to Artificial Intelligence
Learning from interaction
Goal-oriented learning

Learning about, from, and while interacting with an
external environment

Learning what to do—how to map situations to
actions—so as to maximize a numerical reward
signal



Artificial Intelligence

Control Theory and
Psychology Operations Research

T Reinforcement/
Learning (RL)

/

Neuroscience
Artificial Neural Networks



Key Features of RL

Learner is not told which actions to take
Trial-and-Error search
Possibility of delayed reward

= Sacrifice short-term gains for greater long-
term gains

The need to explore and exploit

Considers the whole problem of a goal-directed
agent interacting with an uncertain environment



Supervised Learning

Training Info = desired (target) outputs

}
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Error = (target output — actual output)



Reinforcement Learning

Training Info = evaluations (“rewards” / “penalties™)

}

Inputs - syI:tI;m ’ Outputs (“actions™)

Objective: get as much reward as possible



An Extended Example: Tic-Tac-Toe
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Assume an imperfect opponent: /\\ N

—he/she sometimes makes mistakes } X’S move




An RL Approach to Tic-Tac-Toe

1. Make a table with one entry per state:

State V(s) — estimated probability of winning
5 ?
5 ?

2. Now play lots of games.
To pick our moves,
look ahead one step:

0 loss current state
: ./.m. various possible

0 draw % next states

1 win

<' Just pick the next state with the highest
estimated prob. of winning — the largest V(s);
a greedy move.

But 10% of the time pick a move at random;
an exploratory move.



RL Learning Rule for Tic-Tac-Toe

Starting Position

“Exploratory” move

Opponent's Move

Our Move s — the state before our greedy move

s’ — the state after our greedy move

We increment each V(s) toward V(s') — a backup :
V(s)«<V(s)+alV(s) -V (s)]

a small positive fraction, e.g., a=.1

the step - size parameter



The n-Armed Bandit Problem

O Choose repeatedly from one of n actions; each
choice is called a play

O After each play a,, you get a reward 7, , where

E{rla} =0 (a)

These are unknown action values
Distribution of 7 depends only on a,

O Objective is to maximize the reward in the long term,
e.g., over 1000 plays

To solve the n-armed bandit problem,
you must explore a variety of actions
and exploit the best of them



The Exploration/Exploitation Dilemma

O Suppose you form estimates

Qt(a) ~ Q*(Cl) action value estimates

O The greedy action att is a,

a, = argmaxQ,(a)

a, = a, = exploitation

a, # a, = exploration

O You can’t exploit all the time; you can’t explore all the
time

O You can never stop exploring; but you should always
reduce exploring. Maybe.



Optimistic Initial Values

O All methods so far depend on ¢,(a) , i.e., they are biased.
O Suppose instead we initialize the action values optimistically,

i.e., on the 10-armed testbed, use Q,(a)=5 forall a

100% =
optimistic, greedy
80% — Qy=35, €=0
% 60% realistic, e-greedy
Optimal 0,=0, €=0.1
action  40% -
20%
0% — T T T 1 1
0 200 400 600 800 1000



The Agent-Environment Interface

__5[ Agent
reward action
r 7
!‘ r£+1 ( ]
< L Environment
i

Agent and environment interact at discrete time steps: ¢ =0,1, 2, ...

Agent observes state at step¢: s, €S
produces action at step¢: a, € A(s,)

gets resulting reward: 7., eR

and resulting next state: s, ,

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Bellman Equation for a Policy 7

The basic 1dea:
R =r + + VY
t+1 7/t+2 7/ +3 7/ t+4
2
t+1+7/(t+2+7/t+3+7/ 7;+4°”)
+ 7R

t+1 t+1

So: Vi(s)=E {R,ls =S}
_E %t+1+7/V(t+1]St:S}

Or, without the expectation operator:

Vo(s) = m(s,0) ) Py [RY + 77 (]

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Golf

[0 State is ball location

0 Reward of —1 for each stroke
until the ball is in the hole

O Value of a state?
O Actions:
= putt (use putter)
» driver (use driver)

O putt succeeds anywhere on
the green

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Vputt

20



Optimal Value Function for Golf

O We can hit the ball farther with driver than with putter,
but with less accuracy

O O*(s,driver) gives the value of using driver first, then
using whichever actions are best

.
!Q*(S, river)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 22



Simple Monte Carlo

Vis)« V(s)+a|R -V(s,)]

where R 1s the actual return following state s,.
S
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R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction




Simplest TD Method

V(s)« V(s)+alr,+rV(s,)—V(s)]
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R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction




Dynamic Programming

V(St) < E:z {Vt+1 + yV(SHl) | St}
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R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



TD methods bootstrap and sample

OBootstrapping: update involves an estimate
= MC does not bootstrap
» DP bootstraps
» TD bootstraps

OSampling: update does not involve an
expected value

= MC samples
= DP does not sample
» TD samples

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Advantages of TD Learning

O TD methods do not require a model of the environment,
only experience

O TD, but not MC, methods can be fully incremental
= You can learn before knowing the final outcome
— Less memory
— Less peak computation
= You can learn without the final outcome
— From incomplete sequences

O Both MC and TD converge (under certain assumptions to
be detailed later), but which is faster?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11



TD Gammon

Tesauro 1992, 1994, 19935,

O White has just rolled a 5 and a 2 so = white pieces move
can move one of his pieces 5 and ! 55T 8 - h counterclockwise
one (possibly the same) 2 steps %

O Objective is to advance all pieces to &

points 19-24 [ %
H1tt1ng?I 8 g g 5

O
D Doubllng 1 2 3 4 5 & 7 8 9 10 11 12 black pleces
O

move clockwise
=77

30 pieces, 24 locations implies
enormous number of configurations

O Effective branching factor of 400

TD Gammon combined TD(A) with neural network as value function approximator

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2



Samuel’s Checkers Player

Arthur Samuel 1959, 1967

[0 Score board configurations by a “scoring polynomial”
(after Shannon, 1950)

0 Minimax to determine “backed-up score” of a position
O Alpha-beta cutoffs

O Rote learning: save each board config encountered together
with backed-up score

»« needed a “sense of direction”: like discounting

O [earning by generalization: similar to TD algorithm with
linear value function approximation.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Samuel’s Backups

actual events

backup

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



The Basic Idea

¢

‘... we are attempting to make the score,
calculated for the current board
position, look like that calculated for
the terminal board positions of the
chain of moves which most probably
occur during actual play.”

A. L. Samuel

Some Studies in Machine Learning
Using the Game of Checkers, 1959

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Elevator Dispatching

Crites and Barto 1996

5
dropoff
request

elevator //ﬂ

going up

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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State Space

* 18 hall call buttons: 218combinations

* positions and directions of cars: 18 4 (rounding to nearest floor)

* motion states of cars (accelerating, moving, decelerating, stopped, loading, turning): 6
« 40 car buttons: 240

» Set of passengers waiting at each floor, each passenger's arrival time and destination:
unobservable. However, 18 real numbers are available giving elapsed time since hall
buttons pushed; we discretize these.

» Set of passengers riding each car and their destinations: observable only through the
car buttons

Conservatively about 1022 states

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Actions

* When moving (halfway between floors):
— stop at next floor
— continue past next floor
e When stopped at a floor:
—goup
— go down
e Asynchronous

v
\4

. A

\ 4

\ 4
\4

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Performance Criteria

Minimize:
* Average wait time
e Average system time (wait + travel time)
* % waiting > T seconds (e.g., T = 60)
- e Average squared wait time (to encourage fast and fair service)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

10



Computer Go

[ “Task Par Excellence for AI” (Hans Berliner)
O “New Drosophila of AI” (John McCarthy)
O “Grand Challenge Task (David Mechner)

Sylvain Gelly (2004)
13



Monte Carlo Tree Search + Playout Policy

PSS
/;T: \\\\\\\
. f / \\\ H'““'w-\__h\ ""“*-.._‘___‘_‘

O DP & TD do not apply:
= State space too large - . - -
/./"/'7'\

.

O MC & ES do not apply: T
= Action space too large - .
O New Approach | o~
» In the current state sample and learn to -
construct a locally specialized policy :

» Exploration/exploitation dilemma dealt :
with Upper Confidence Tree (UCT)

» Evaluate leaves using Playout Policy

14



Inverted Helicopter Flight

Andrew Ng et al. (2004-2008)
RL learns policy better than any human

Dynamics
Model

Trajectory +
enalty Functio

Reward
Function

http://heli.stanford.edu/

O Generative model for multiple
suboptimal demonstrations.

O Learning algorithm that extracts:

» Intended trajectory
» High-accuracy dynamics model

O Experimental results:

= Enabled them to fly autonomous
helicopter aerobatics well beyond
the capabilities of any other
autonomous helicopter.

\ 4

Policy

Helicopter should
follow a desired
trajectory.

15



The Arcade Learning Environment (ALE)

ALE (Nadaf 2010, Bellamare et. al. 2012) is an interface built
upon the open-source Atari 2600 emulator Stella. It provides a
convenient interface to ATARI 2600 games.




Features for ALE

Basic Abstraction of Screen Shots (BASS, from Nadaf 2010)
first stores a background of the game it's playing. Then for
every frame it subtracts away the background and divides the
screen into 16x14 tiles. For each colour (8-bit SECAM) it
creates a feature. It then takes the pairwise interaction of all
these resulting features resulting in 1,606,528 features.

Color provides object recognition.

We study linear function approximation with BASS. We want
to see how well one can do with that if one finds the right
parameters

Improved results has been achieved with non-linear
neural /deep approaches.



The gap

Table : The gap between score (more is better) achieved by (linear)
learning and (uct) planning

] Game UCT  BestLearner ‘
Beam Rider 6,624.6 929.4
Seaquest 5,132.4 288
Space Invaders 2,718 250.1

Pong 21 —19

Out of 55 games, UCT has the best performance on 45 of them.
The remaining games require a terribly long horizon.



Learning from an oracle

e Reinforcement learning is made much more difficult than
supervised learning due to the need to explore.

e Therefore, many authors has in recent years been developing
ways of teaching an rl agent through e.g. demonstration or
advice with reduction to supervised learning.

e | will here discuss this idea in the context of Atari games
through the Arcade Learning Environment (ALE) framework



Learning from UCT
A common scenario when applying reinforcement learning
algorithms in real-world situations, learn in a simulator, apply in
the real-world.

e UCT in the “real-world” still requires the simulator.

e UCT does not provide a policy representation, merely a
trajectory.

e How do you extract a complete explicit policy from UCT?

e We will treat the value estimates from UCT as advice

provided to the agent and we can then learn to play Pong
with just a few episodes of data.

e Learning the value function is now a regression problem we
solve using LibLinear (also exploring kernels, brings us back to
feature selection /sparsification )

e Similar to the Dataset Aggregation algorithm for imitation
learning (Ross and Bagnell 2010)



DAgger for reinforcement learning with advice Initialise D < ()
Initialise m1(=7*) t=0 for i =1to N do
while not end of episode do
for each action a do
Obtain feature ¢(s¢, a) and oracle’s Q*(st, a)
Add training sample {(¢(st, a), Q*(st,a))} to D..
end
Act according to 7;
end
for each action a do
‘ Learn new model Qa = WiaTgb from D, using regression
end
mi(¢) = argmax, Q7(¢)

end




Preliminary results

Average performance on Pong Best Reward so Far on Pong

—14 w : = T T T \
RLAdvice —10 u
o —16|[—— SARSA |4/ | 5 J
@ e 1V i ® 15| i
S 5l L | £ -1
x WAV : o
—20 | W ) b _20| .7 |+ RLAdvice
| | | | | |
0 10 20 30 0 10 20 30
Episodes Episodes

By Daswani, Sunehag, Hutter 2014

Figure : Pong Results: RLadvice with different amount of aggregated
data (1-30 games) vs SARSA (linear function approximation) after 5000
games played. Results averaged over 8 runs



Partially Observable Markov Decision Processes

Exacerbated Exploration issues due to not knowing the state.
Not knowing the underlying state space makes things worse
Explicit or implicit restrictions to subclasses

Recent work (feature rl) on history based methods that learns
a map from histories to some finite/compact state space
(other alternative PSRs)

Model-free version becomes feature selection for high-dim rl



General Reinforcement Learning

~ Observation -

Reward

Classes of completely general reinforcement learning
environments. Beyond hopeless

No finite underlying state space assumed. Theoretical work
exist with some further assumption exist
Bayesian (computable env.), AIXI (Hutter 2005)

Finite/compact classes; Optimistic agents (Sunehag&Hutter.
2012), Max. exploration (Lattimore&Hutter&Sunehag 2013)



Feature Reinforcement Learning

Feature RL aims to automatically reduce a complex real-world
non-Markovian problem to a useful (computationally tractable)
representation (MDP).

Formally we create a map ¢ from an agent’s history to a state
representation. ¢ is then a function that produces a relevant
summary of the history.

¢(ht) = St



Feature Markov Decision Process (PMDP)

To select the best ¢, one defines a cost function.

Gbest = arg ming(Cost(¢)).

e Feature RL is a recent framework.
e Original cost from Hutter 2009 is a model-based criterion.

Cost(¢]h) = CL(spnlarin) + CL(rLnlstin: a1n) + CL(S)

A practically useful modification adds a parameter « to
control the balance between reward coding and state coding,

COSta(¢|hn) = aCL(slzn|31:n) + (1 - a)CL(rl:n|51:m al:n) + CL(d))‘

e A global stochastic search (e.g. simulated annealing) is used
to find the ¢ with minimal cost.
e For fixed ¢, MDP methods can be used to find a good policy



Model-free cost criterion
Daswani&Sunehag&Hutter 2013 introduced a fitted-Q cost

Costor(¢) =
mingQ % Zg:1(rt+1+’)’ max, Q(¢(he+1), a)—Q(P(he), at))2+Reg(qb)

e Costgy also extends easily to the linear function approximation
setting by approximating Q(hy, a;) + &(ht, a) T w where
€:H x A— RK for some k € R.

e Connects feature rl to feature selection for TD methods, e.g.
Lasso-TD or Dantzig-TD using ¢1 regularization while above
Reg tends to be a more aggressive .

e For a fixed policy, a TD cost without max, can be defined but
one can also reduce the problem to feature selection for
supervised learning using pairs (s¢, R;) where R; is the return
achieved after state s;.



Input : Environment Env();
Initialise ¢ ;
Initialise history with observations and rewards from
t = init_history random actions;
Initialise M to be the number of timesteps per epoch;
while true do
¢ = SimulAnneal(¢, ht);
S1:t = (¢(h1)7 ¢(h2)7 X3 ¢(ht))'
7w = FindPolicy(si:t, r:t, a1:t-1) ;
for i =1,2,3,...M do
ay < m(st);
Ot+1, rt4+1 < Env(hy, at);
hi11 < htatory1riy1;
t+—t+1;
end
end
Algorithm 1: A high-level view of the generic #MDP algorithm.




Feature maps

e Tabular : use suffix trees to map histories
to states (Nguyen&Sunehag& Hutter O
2011,2012). Looping trees for long-term
dependences (Daswani&Sunehag&Hutter

Y\
2012) 52
e Function approximation : define a new (/ 1
Q)
SO Sl

feature class of event selectors. A feature
&; checks the n — m position in the history
(hn) for an observation-action pair (o, a).

If the history is (0,1),(0,2),(3,4),(1,2) then a event-selector
checking 3 steps in the past for the observation-action pair (0, 2)
will be turned on.



Bayesian general reinforcement learning: MC-AIXI-CTW

Unlike Feature RL, the Bayesian approach does not pick one map but
uses a mixture of all instead. The problem is (again) split into two main
areas:

e Learning - online sequence prediction / model building
e Planning/Control - search / sequential decision theory
The hard parts:

e Large model class required for Bayesian mixture predictor to have
general prediction capabilities.

e Fortunately, an efficient and general class exists: all Prediction
. . . . D—1
Suffix Trees of maximum finite depth D. Class contains over 22
models!

e The planning problem can be performed approximately with
Monte-Carlo Tree Search (UCT)

e MC-AIXI-CTW (Veness et. al. 2010) combines the above



Environment Perform action in real world

Record new sensor information,

.. Past { Observation/Reward{Action

PR Resrd Aen
MC-AIXI-CTW

Refine environment mods ‘An approximate ATXI agent
w0 -
o/ \2 3/ \ob
Update Bayesian Mixture of Models / f / f
future reward estimate

Decide on best action







POCMAN : Rolling average over 1000 epochs

o] T T T
T
s o ]
@
¢ —— FAhQL
E —2r —— MC-AIXI 48 | |
| | | | T T
1,000 1,500 2,000 2,500 3,000 3,500
Epochs
Figure : MC-AIXI vs hQL on Pocman
] Agent Cores Memory(GB) Time(hours) Iterations
MC-AIXI 96 bits 8 32 60 1-10°
MC-AIXI 48 bits 8 14.5 49.5 3.5-10°

FAhQL 1 0.4 17.5 3.5-10°




Conclusions/Outlook

Reinforcement Learning is a powerful paradigm within which
(basically) all Al problems can be formulated

Many practical successes using MDPs by engineering problem
reductions/reprentations

Practically increasing the versatility of agents by learning
reductions automatically.

Recently introduced arcade gaming environment (from
Alberta) for RL containing all ATARI games. Aim, have one
generic RL agent solve all!

Use data on how valuable states are from either simulations or
experience to reduce complexity



