
Reinforcement Learning

Peter Sunehag

2013

Reinforcement Learning  

Reinforcement Learning Agents
        an approach to AGI

   

Peter Sunehag

Tutorial at the seventh conference on AGI
        

Quebec City August 2014

Many slides borrowed from e.g. Sutton&Barto



!"C-*#&$+J"*K""$+!,+-$B+30+

!"#$%&'(")"$*+,"-'$#$.+L'-)"K&'M
S%&E(L%#%&"04(?AT%&.(BA./5"00()=(3&A$0%B.

!,+/'&JC")6+

N+3C.&'#*2)6

</A?2"./1?'(
-#M#A6#'(
#A#]1717@7(
%#T1&A#B%#/.

3'*#%#(#-C

0$*"CC#."$("

*&"@1/1A#"00E(
@%/%&B1#1./1?'(
M#A6#((6A&0@(5(
30"##1#L(3&A$0%B

O*-*#6*#(-C+

8-(2#$"+,"-'$#$.

VA./0E(1717@7(@"/"(
?0"..1F1?"/1A#'(

&%L&%..1A#'(
?0-./%&1#L



O&)"+3PPC#(-*#&$6+&%+!,
¥ !2%?M%&.(N<"B-%0'(8ObOQ

F1&./(-.%(AF(;K(1#("#(1#/%&%./1#L(&%"0(L"B%

¥ N=#T%&/%@Q(2%01?A3/%&(F01L2/(N9L(%/("07(,++[Q

$%//%&(/2"#("#E(2-B"#

¥ !AB3-/%&(cA(N:!*'(,++DQ
F1#"00E(.AB%(3&AL&"B.(61/2(X&%".A#"$0%Y(30"E

¥ ;A$A?-3(<A??%&(*%"B.( N</A#%(G(S%0A.A'(;%1@B100%&(%/("07Q

dA&0@e.($%./(30"E%&(AF(.1B-0"/%@(.A??%&'(8OOOf(;-##%&]-3(,+++

¥ =#T%#/A&E(V"#"L%B%#/( NS"#(;AE'(H%&/.%M".'(K%%(G(*.1/.1M01.Q
8+]8bg(1B3&AT%B%#/(AT%&(1#@-./&E(./"#@"&@(B%/2A@.

¥ JE#"B1?(!2"##%0()..1L#B%#/( N<1#L2(G(H%&/.%M".'(91%(G(Z"EM1#Q

dA&0@h.($%./("..1L#%&(AF(&"@1A(?2"##%0.(/A(BA$10%(/%0%32A#%(?"00.

¥ >0%T"/A&(!A#/&A0( N!&1/%.(G(H"&/AQ
NU&A$"$0EQ(6A&0@h.($%./(@A6#]3%"M(%0%T"/A&(?A#/&A00%&

¥ V"#E(;A$A/.
#"T1L"/1A#'($1]3%@"0(6"0M1#L'(L&".31#L'(.61/?21#L($%/6%%#(.M100.777

¥ *J]c"BBA#("#@(i%00EF1.2( N*%."-&A'(J"20Q
dA&0@h.($%./($"?ML"BBA#(30"E%&7(c&"#@B"./%&(0%T%0

Arcade Learning Enivornment
Nadaf 2010, Bellamare et al. 
2012, ... (on-going challenge)



4&)PC"*"+3."$*

¥ *%B3A&"00E(.1/-"/%@

¥ !A#/1#-"0(0%"&#1#L("#@(30"##1#L

¥ _$^%?/(1.(/A(-%%"(* /2%(%#T1&A#B%#/

¥ >#T1&A#B%#/(1.(./A?2"./1?("#@(-#?%&/"1#

Environment

actionstate

reward
Agent



D2-*+#6+!"#$%&'(")"$*+,"-'$#$.F

¥ )#("33&A"?2(/A()&/1F1?1"0(=#/%001L%#?%

¥ K%"&#1#L(F&AB(1#/%&"?/1A#

¥ cA"0]A&1%#/%@(0%"&#1#L

¥ K%"&#1#L("$A-/'(F&AB'("#@(6210%(1#/%&"?/1#L(61/2("#(
%R/%&#"0(%#T1&A#B%#/

¥ K%"&#1#L(62"/(/A(@Aj2A6(/A(B"3(.1/-"/1A#.(/A(
"?/1A#.j.A(".(/A(B"R1B1W%("(#-B%&1?"0(&%6"&@(
.1L#"0



42-P*"'+RS+0$*'&B5(*#&$

Psychology

Artificial Intelligence

Control Theory and
Operations Research

Artificial Neural Networks

Reinforcement
Learning (RL)

Neuroscience



T"E+L"-*5'"6+&%+!,

¥ K%"&#%&(1.(#A/(/A0@(621?2("?/1A#.(/A(/"M%

¥ *&1"0]"#@]>&&A&(.%"&?2

¥ UA..1$101/E(AF(@%0"E%@(&%6"&@

<"?&1F1?%(.2A&/]/%&B(L"1#.(FA&(L&%"/%&(0A#L]
/%&B(L"1#.

¥ *2%(#%%@(/A("UPC&'" "#@("UPC&#*

¥ !A#.1@%&.(/2%(62A0%(3&A$0%B(AF("(LA"0]@1&%?/%@(
"L%#/(1#/%&"?/1#L(61/2("#(-#?%&/"1#(%#T1&A#B%#/



O5P"'A#6"B+,"-'$#$.

Supervised!Learning!

System
Inputs Outputs

Training!Info!!=!!desired!(target)!outputs

Error!!=!!(target!output!!Ð actual!output)



!"#$%&'(")"$*+,"-'$#$.

RL

System
Inputs Outputs!(ÒactionsÓ)

Training!Info!!=!!evaluations!(ÒrewardsÓ!/!ÒpenaltiesÓ)

Objective:!!get!as!much!reward!as!possible



3$+WU*"$B"B+WU-)PC"S+V#(HV-(HV&"

X XXO O

X

XO

X

O

XO

X

O

X

XO

X

O

X O

XO

X

O

X O

X

}!xÕs!move

}!xÕs!move

}!oÕs!move

}!xÕs!move

}!oÕs!move

...

...... ...

... ... ... ... ...

x x

x

x o

x

o

xo

x

x

x
x
o

o

Assume an imperfect opponent:

Ñhe/she sometimes makes mistakes



3$+!,+3PP'&-(2+*&+V#(HV-(HV&"

1.!Make!a!table!with!one!entry!per!state:

2.!Now!play!lots!of!games.

To!pick!our!moves,!

look!ahead!one!step:

State!!!!!!!!!V(s)!Ð estimated!probability!of!winning

.5!!!!!!!!!!?

.5!!!!!!!!!!?

1!!!!!!!!win

0!!!!!!!!loss

0!!!!!!!draw

x

xxx

o
o

o
o

o
x
x

oo

o o
x

x
x

x
o

current!state

various!possible

next!states*
Just!pick!the!next!state!with!the!highest

estimated!prob.!of!winning!Ñ the!largest!V(s);

a!greedy move.

But!10%!of!the!time!pick!a!move!at!random;

an!exploratory move.



!,+,"-'$#$.+!5C"+%&'+V#(HV-(HV&"

ÒExploratoryÓ move

s!!! Ð !the!state!before!our!greedy!move

s !! Ð !!the!state!after!our!greedy!move

We!increment!each!V(s) toward!V(s ) Ð a!backup :

V(s) V (s) V(s ) V (s)

a!small!positive!fraction, e.g., .1

the!step - size parameter

c *

*

*g



The n-Armed Bandit Problem

Choose repeatedly from one of n actions; each 

choice is called a play

After each play      , you get a reward      , whereat rt

These are unknown action values

Distribution of      depends only on rt at

Objective is to maximize the reward in the long term, 

e.g., over 1000 plays

To solve the n-armed bandit problem,
you must explore a variety of actions
and exploit the best of them



The Exploration/Exploitation Dilemma

Suppose you form estimates

The greedy action at t is at

You canÕt exploit all the time; you canÕt explore all the 
time

You can never stop exploring; but you should always 
reduce exploring.  Maybe.

Qt(a) Q
*
(a) action value estimates

at

* argmax
a

Qt(a)

at at

*
exploitation

at at

* exploration



Optimistic Initial Values

All methods so far depend on          , i.e., they are biased.

Suppose instead we initialize the action values optimistically,

Q0 (a)

i.e., on the 10-armed testbed, use Q0 (a) 5   for all a



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

The Agent-Environment Interface

Agent and environment interact at discrete time steps :  t 0,1, 2,

     Agent observes state at step t :     st S

     produces action at step t :   at A(st )

     gets resulting reward :     rt 1

     and resulting next state:   st 1

t

. . .
st a

rt +1 st +1
t +1a

rt +2 st +2
t +2a

rt +3 st +3
. . .

t +3a



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 17

Bellman Equation for a Policy 

Rt rt 1 rt 2

2rt 3

3rt 4

rt 1 rt 2 rt 3

2
rt 4

rt 1 Rt 1

The basic idea: 

So: V (s) E Rt st s

E rt 1 V st 1 st s

Or, without the expectation operator: 

V (s) (s,a) Pss 

a
Rss 

a
V (s )

s a



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20

Golf

State is ball location

Reward of Ð1 for each stroke 

until the ball is in the hole

Value of a state?

Actions: 

putt (use putter)

driver (use driver)

putt succeeds anywhere on 

the green



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 22

Optimal Value Function for Golf

We can hit the ball farther with driver than with putter, 

but with less accuracy

Q*(s,driver) gives the value of using driver first, then 

using whichever actions are best



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Simple Monte Carlo

T T T TT

T T T T T

!(&# ) !(&#) %# ! (&# )

where %#  is the actual return following state &# .

&#

T T

T T

TT T

T TT



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 6

Simplest TD Method

T T T TT

T T T T T

&# 1

$# 1

&#

!(&# ) !(&#) $# 1 ! (&# 1 ) !(&# )

TTTTT

T T T T T



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

Dynamic Programming

#### &&!$'&! |)()( 11

T

T T T

&#

$# 1

&# 1

T

TT

T

TT

T

T

T



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 8

TD methods bootstrap and sample

Bootstrapping: update involves an (&#)*+#(

MC does not bootstrap

DP bootstraps

TD bootstraps

Sampling: update does not involve an 

(,-(.#(/01+23(

MC samples

DP does not sample

TD samples



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

Advantages of TD Learning

TD methods do not require a model of the environment, 

only experience

TD, but not MC, methods can be fully incremental

You can learn before knowing the final outcome

Ð Less memory

Ð Less peak computation

You can learn without the final outcome

Ð From incomplete sequences

Both MC and TD converge (under certain assumptions to 

be detailed later), but which is faster?



?@)8@)8#%%,.)'.*)A@)B@)C'&%,9)?(/.-,&2(3(.%)D('&./.69)A.)!.%&,*#2%/,. E

TD Gammon

F($'#&,)GHHEI)GHHJI)GHHKI)@@@

L0/%()0'$)>#$%)&,""(*)')K)'.*)')E)$,)

2'.)3,7(),.(),-)0/$)1/(2($)K)'.*)

,.()M1,$$/=";)%0()$'3(N)E)$%(1$

<=>(2%/7()/$)%,)'*7'.2()'"")1/(2($)%,)

1,/.%$)GH+EJ

O/%%/.6

P,#="/.6

QR)1/(2($I)EJ)",2'%/,.$)/31"/($)

(.,&3,#$).#3=(&),-)2,.-/6#&'%/,.$

S--(2%/7()=&'.20/.6)-'2%,&),-)JRR

FP)B'33,.)2,3=/.(*)FPM N)5/%0).(#&'").(%5,&4 '$)7'"#()-#.2%/,.)'11&,T/3'%,&



?@)8@)8#%%,.)'.*)A@)B@)C'&%,9)?(/.-,&2(3(.%)D('&./.69)A.)!.%&,*#2%/,. Q

A&%0#&)8'3#(")GHKHI)GHUV

SamuelÕs Checkers Player

82,&()=,'&*)2,.-/6#&'%/,.$)=;)')W$2,&/.6)1,";.,3/'"X)

M'-%(&)80'..,.I)GHKRN

Y/./3'T %,)*(%(&3/.()W='24(*+#1)$2,&(X),-)')1,$/%/,.

A"10'+=(%' 2#%,--$

?,%()"('&./.69)$'7()('20)=,'&*)2,.-/6)(.2,#.%(&(*)%,6(%0(&)

5/%0)='24(*+#1)$2,&(

.((*(*)')W$(.$(),-)*/&(2%/,.X9)"/4()*/$2,#.%/.6

D('&./.6)=;)6(.(&'"/Z'%/,.9)$/3/"'&)%,)FP)'"6,&/%03)5/%0)

"/.('&)7'"#()-#.2%/,.)'11&,T/3'%/,.@



?@)8@)8#%%,.)'.*)A@)B@)C'&%,9)?(/.-,&2(3(.%)D('&./.69)A.)!.%&,*#2%/,. J

SamuelÕs Backups



?@)8@)8#%%,.)'.*)A@)B@)C'&%,9)?(/.-,&2(3(.%)D('&./.69)A.)!.%&,*#2%/,. K

The Basic Idea

W@)@)@)5()'&()'%%(31%/.6)%,)3'4()%0()$2,&(I)
2'"2#"'%(*)-,&)%0()2#&&(.%)=,'&*)
1,$/%/,.I)",,4)"/4()%0'%)2'"2#"'%(*)-,&)
%0()%(&3/.'")=,'&*)1,$/%/,.$),-)%0()
20'/.),-)3,7($)50/20)3,$%)1&,='=";)
,22#&)*#&/.6)'2%#'")1"';@X

A. L. Samuel

Some Studies in Machine Learning 
Using the Game of Checkers, 1959



?@)8@)8#%%,.)'.*)A@)B@)C'&%,9)?(/.-,&2(3(.%)D('&./.69)A.)!.%&,*#2%/,. V

Elevator Dispatching

[&/%($)'.*)C'&%,))GHHU



?@)8@)8#%%,.)'.*)A@)B@)C'&%,9)?(/.-,&2(3(.%)D('&./.69)A.)!.%&,*#2%/,. \

State Space

¥ 18 hall call buttons:  2     combinations

¥ positions and directions of cars:  18      (rounding to nearest floor)

¥ motion states of cars (accelerating, moving, decelerating, stopped, loading, turning):  6

¥ 40 car buttons: 2

¥ Set of passengers waiting at each floor, each passenger's arrival time and destination: 
unobservable. However, 18 real numbers are available giving elapsed time since hall 
buttons pushed; we discretize these.

¥ Set of passengers riding each car and their destinations: observable only through the 
car buttons

18

4

40

Conservatively about 10     states
22



?@)8@)8#%%,.)'.*)A@)B@)C'&%,9)?(/.-,&2(3(.%)D('&./.69)A.)!.%&,*#2%/,. H

Actions

¥ When moving (halfway between floors):

Ð stop at next floor

Ð continue past next floor

¥ When stopped at a floor:

Ð go up

Ð go down

¥ Asynchronous



?@)8@)8#%%,.)'.*)A@)B@)C'&%,9)?(/.-,&2(3(.%)D('&./.69)A.)!.%&,*#2%/,. GR

Performance Criteria

¥ Average wait time

¥ Average system time (wait + travel time)

¥ % waiting > T seconds (e.g., T = 60)

¥ Average squared wait time (to encourage fast and fair service)

Minimize:



Computer Go

8;"7'/.)B(""; MERRJN

GQ

WF'$4)]'&)ST2(""(.2()-,&)A!X)MO'.$)C(&"/.(&N

W^(5)P&,$,10/"'),-)A!X)M_,0.)Y2['&%0;N

WB&'.*)[0'""(.6()F'$4X)MP'7/*)Y(20.(&N



Monte Carlo Tree Search + Playout Policy

GJ

P])`)FP)*,).,%)'11";9

8%'%( $1'2()%,,)"'&6(

Y[)`)S8)*,).,%)'11";9

A2%/,.)$1'2()%,,)"'&6(

^(5)A11&,'20

!.)%0()2#&&(.%)$%'%()$'31"()'.*)"('&.)%,)

2,.$%&#2%)')",2'"";)$1(2/'"/Z(*)1,"/2;)

ST1",&'%/,.a(T1",/%'%/,.)*/"(33')*('"%)

5/%0)b11(&)[,.-/*(.2()F&(()Mb[FN

S7'"#'%()"('7($)#$/.6)]"';,#% ],"/2;

.)%,)

;)

*('"%)

N

;



Inverted Helicopter Flight

0%%19aa0("/@$%'.-,&*@(*#a

GK

A.*&(5)^6)(%)'"@)MERRJ+ERR\N

?D)"('&.$)1,"/2;)=(%%(&)%0'.)'.;)0#3'.

O("/2,1%(&)$0,#"*)

-,"",5)')*($/&(*)

%&'>(2%,&;@

?(5'&*

c#.2%/,.

?(/.-,&2(3(.%

D('&./.6

P;.'3/2$

Y,*("

P'%'

F&'>(2%,&;)d

](.'"%;)c#.2%/,.

],"/2;

B(.(&'%/7()3,*(")-,&)3#"%/1"()
$#=,1%/3'")*(3,.$%&'%/,.$@

D('&./.6)'"6,&/%03)%0'%)(T%&'2%$9
!.%(.*(*)%&'>(2%,&;

O/60+'22#&'2;)*;.'3/2$)3,*("

ST1(&/3(.%'")&($#"%$9)
S.'="(*)%0(3)%,)-";)'#%,.,3,#$)
0("/2,1%(&)'(&,='%/2$)5("")=(;,.*)
%0()2'1'=/"/%/($),-)'.;),%0(&)
'#%,.,3,#$)0("/2,1%(&@



The Arcade Learning Environment (ALE)
ALE (Nadaf 2010, Bellamare et. al. 2012) is an interface built
upon the open-source Atari 2600 emulator Stella. It provides a
convenient interface to ATARI 2600 games.



Features for ALE

• Basic Abstraction of Screen Shots (BASS, from Nadaf 2010)
first stores a background of the game it’s playing. Then for
every frame it subtracts away the background and divides the
screen into 16x14 tiles. For each colour (8-bit SECAM) it
creates a feature. It then takes the pairwise interaction of all
these resulting features resulting in 1,606,528 features.

• Color provides object recognition.

• We study linear function approximation with BASS. We want
to see how well one can do with that if one finds the right
parameters

• Improved results has been achieved with non-linear
neural/deep approaches.



The gap

Table : The gap between score (more is better) achieved by (linear)
learning and (uct) planning

Game UCT BestLearner

Beam Rider 6,624.6 929.4
Seaquest 5,132.4 288

Space Invaders 2,718 250.1
Pong 21 −19

Out of 55 games, UCT has the best performance on 45 of them.
The remaining games require a terribly long horizon.



Learning from an oracle

• Reinforcement learning is made much more difficult than
supervised learning due to the need to explore.

• Therefore, many authors has in recent years been developing
ways of teaching an rl agent through e.g. demonstration or
advice with reduction to supervised learning.

• I will here discuss this idea in the context of Atari games
through the Arcade Learning Environment (ALE) framework



Learning from UCT
A common scenario when applying reinforcement learning
algorithms in real-world situations, learn in a simulator, apply in
the real-world.

• UCT in the “real-world” still requires the simulator.

• UCT does not provide a policy representation, merely a
trajectory.

• How do you extract a complete explicit policy from UCT?

• We will treat the value estimates from UCT as advice
provided to the agent and we can then learn to play Pong
with just a few episodes of data.

• Learning the value function is now a regression problem we
solve using LibLinear (also exploring kernels, brings us back to
feature selection/sparsification )

• Similar to the Dataset Aggregation algorithm for imitation
learning (Ross and Bagnell 2010)



DAgger for reinforcement learning with advice Initialise D ← ∅
Initialise π1(= π∗) t = 0 for i = 1 to N do

while not end of episode do
for each action a do

Obtain feature φ(st , a) and oracle’s Q∗(st , a)
Add training sample {(φ(st , a),Q∗(st , a))} to Da.

end
Act according to πi

end
for each action a do

Learn new model Q̂a
i := wa

i
>φ from Da using regression

end

πi (φ) = arg maxa Q̂
a
i (φ)

end



Preliminary results

0 10 20 30

−20

−18

−16

−14

Episodes

R
ew

ar
d

Average performance on Pong

RLAdvice
SARSA

0 10 20 30

−20

−15

−10

Episodes
R

ew
ar

d

Best Reward so Far on Pong

RLAdvice

Figure : Pong Results: RLadvice with different amount of aggregated
data (1-30 games) vs SARSA (linear function approximation) after 5000
games played. Results averaged over 8 runs

By Daswani, Sunehag, Hutter 2014



Partially Observable Markov Decision Processes

• Exacerbated Exploration issues due to not knowing the state.

• Not knowing the underlying state space makes things worse

• Explicit or implicit restrictions to subclasses

• Recent work (feature rl) on history based methods that learns
a map from histories to some finite/compact state space
(other alternative PSRs)

• Model-free version becomes feature selection for high-dim rl



General Reinforcement Learning

• Classes of completely general reinforcement learning
environments. Beyond hopeless

• No finite underlying state space assumed. Theoretical work
exist with some further assumption exist

• Bayesian (computable env.), AIXI (Hutter 2005)

• Finite/compact classes; Optimistic agents (Sunehag&Hutter.
2012), Max. exploration (Lattimore&Hutter&Sunehag 2013)



Feature Reinforcement Learning

Life

Universe

Everything

42

Feature RL aims to automatically reduce a complex real-world
non-Markovian problem to a useful (computationally tractable)
representation (MDP).

Formally we create a map φ from an agent’s history to a state
representation. φ is then a function that produces a relevant
summary of the history.

φ(ht) = st



Feature Markov Decision Process (ΦMDP)
To select the best φ, one defines a cost function.

φbest = arg minφ(Cost(φ)).

• Feature RL is a recent framework.
• Original cost from Hutter 2009 is a model-based criterion.

Cost(φ|h) = CL(s1:n|a1:n) + CL(r1:n|s1:n, a1:n) + CL(φ)

A practically useful modification adds a parameter α to
control the balance between reward coding and state coding,

Costα(φ|hn) := αCL(s1:n|a1:n) + (1− α)CL(r1:n|s1:n, a1:n) + CL(φ).

• A global stochastic search (e.g. simulated annealing) is used
to find the φ with minimal cost.

• For fixed φ, MDP methods can be used to find a good policy



Model-free cost criterion

Daswani&Sunehag&Hutter 2013 introduced a fitted-Q cost

CostQL(φ) =
minQ

1
2

∑n
t=1(rt+1+γmaxa Q(φ(ht+1), a)−Q(φ(ht), at))2+Reg(φ)

• CostQL also extends easily to the linear function approximation
setting by approximating Q(ht , at)← ξ(ht , at)

Tw where
ξ : H×A → Rk for some k ∈ R.

• Connects feature rl to feature selection for TD methods, e.g.
Lasso-TD or Dantzig-TD using `1 regularization while above
Reg tends to be a more aggressive `0.

• For a fixed policy, a TD cost without maxa can be defined but
one can also reduce the problem to feature selection for
supervised learning using pairs (st ,Rt) where Rt is the return
achieved after state st .



Input : Environment Env();
Initialise φ ;
Initialise history with observations and rewards from
t = init history random actions;
Initialise M to be the number of timesteps per epoch;
while true do

φ = SimulAnneal(φ, ht);
s1:t = (φ(h1), φ(h2), ..., φ(ht));
π = FindPolicy(s1:t , r1:t , a1:t−1) ;
for i = 1, 2, 3, ...M do

at ← π(st);
ot+1, rt+1 ← Env(ht , at);
ht+1 ← htatot+1rt+1;
t ← t + 1;

end

end
Algorithm 1: A high-level view of the generic ΦMDP algorithm.



Feature maps

• Tabular : use suffix trees to map histories
to states (Nguyen&Sunehag&Hutter
2011,2012). Looping trees for long-term
dependences (Daswani&Sunehag&Hutter
2012)

• Function approximation : define a new
feature class of event selectors. A feature
ξi checks the n−m position in the history
(hn) for an observation-action pair (o, a).

10

10

s0

s2

s1

If the history is (0, 1), (0, 2), (3, 4), (1, 2) then a event-selector
checking 3 steps in the past for the observation-action pair (0, 2)
will be turned on.



Bayesian general reinforcement learning: MC-AIXI-CTW

Unlike Feature RL, the Bayesian approach does not pick one map but
uses a mixture of all instead. The problem is (again) split into two main
areas:

• Learning - online sequence prediction / model building

• Planning/Control - search / sequential decision theory

The hard parts:

• Large model class required for Bayesian mixture predictor to have
general prediction capabilities.

• Fortunately, an efficient and general class exists: all Prediction

Suffix Trees of maximum finite depth D. Class contains over 22D−1

models!

• The planning problem can be performed approximately with
Monte-Carlo Tree Search (UCT)

• MC-AIXI-CTW (Veness et. al. 2010) combines the above



Overview of proposed agent architecture



Domain : POCMAN



1,000 1,500 2,000 2,500 3,000 3,500

−2

0

Epochs

C
u

m
.

R
ew

ar
d

POCMAN : Rolling average over 1000 epochs

FAhQL
MC-AIXI 48

Figure : MC-AIXI vs hQL on Pocman

Agent Cores Memory(GB) Time(hours) Iterations

MC-AIXI 96 bits 8 32 60 1 · 105

MC-AIXI 48 bits 8 14.5 49.5 3.5 · 105

FAhQL 1 0.4 17.5 3.5 · 105



Conclusions/Outlook

• Reinforcement Learning is a powerful paradigm within which
(basically) all AI problems can be formulated

• Many practical successes using MDPs by engineering problem
reductions/reprentations

• Practically increasing the versatility of agents by learning
reductions automatically.

• Recently introduced arcade gaming environment (from
Alberta) for RL containing all ATARI games. Aim, have one
generic RL agent solve all!

• Use data on how valuable states are from either simulations or
experience to reduce complexity


