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“As the number of experts increase, each specialty becomes all the 
more self-sustaining and self-contained. Such balkanization carries 
scientific thought farther away from natural philosophy which, 
intellectually, is the meaning and goal of science” 
 
                - Isidor Isaac Rabi 



Motivation and Goals 
  
 
• Establish concrete mathematical relation between maximizing path diversity and notions of 
 rationality traditionally associated with ‘intelligence’ 
 
• Understand the microscopic origins of forces that maximize diversity of future system paths 
 
• Understand role of critical dynamics and long range correlations in human brain organization 
 and behavior  
 
• Understand the mechanisms behind self-organization of complex structures capable of 
 sophisticated behavior such as cognition in systems governed solely by the laws of physics 
 
• Use the knowledge of these mechanisms to enhance the capabilities of the contemporary 
 cognitive architectures 
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Causal Entropic Forces1 
  
 
• Based on the idea of maximizing entropy production over finite duration paths 
 
• Entropy over paths through configuration space: 
 
 

 
• Path based Entropic Force: 
 
 
• Environment as a heat bath at temperature Tr  coupled only to a few degrees of freedom of 
 the system 
 
• Formulation of Path based Entropic Force under Markovian Langevin dynamics: 
 

 
 
• Asymptotic Equipartition Property for horizon τ → ∞  
 

 
 
 
 

   1Courtesy: ‘Causal Entropic Forces’, A.D. Gross & C.E. Freer 
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Open Quantum Systems – Projective Interactions 
  
 
• Density Matrix Evolution – Von Neumann-Liouville Equation 
 
 
 
• Lindblad Master Equation – Quantum Markov Master Equation: 
 
 

 
• Expectation Value of Force: 
 

 
 
 
 
• Common Dissipation rate μ and Projective Valued Measure (PVM) Lindbladians: 
 
 
 
  
• Resemblance with the path based Entropic Force 
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Open Quantum Systems – General Interactions 
  
 
• Von-Neumann Entropy always increases for Projective Lindbladians 
 
• POVM (Positive Operator Valued Measure) Lindblad operators for general interactions: 
 
 
 
• System Entropy can decrease at the cost of Entropy of the bath 
 
• Entropy balance relation (Second law for open systems) 
 
 
 
• Assumptions: 
 
 System evolves as a non-equilibrium dissipative process 
  
 The POVM Lindbladian for the system-bath interaction decreases the Von-Neumann  
   Entropy of the system to allow a stationary goal state to be approached 

 
 Average kinetic energy per molecule of the System is initially higher than reservoir        
   temperature 
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Maximizing Path Diversity 
  
 
• Future path diversity as maximum entropy that can be produced from the present state to a 
 future time horizon: 
 
 
• From the Entropy Balance relation: 
 
 
• Maximum path diversity: 
 

 
 
• The system is dissipating heat to the reservoir and Γ is the maximum attainable future 
 system entropy 
 
• It can easily be inferred that this maximum value of diversity is approached when the 
 entropy production from the initial to the present state (Δσ) is minimum. 
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Hamiltonian Theory of Dynamic Economics2,3 
  
 
• For the problem of consumption-optimal growth with positive rate of time discount α > 0,  
 the equations of motion are: 
 
 

 
 
• H is the system Hamiltonian representing the production technology 
 
• Optimal path to the steady state is given by the one that maximizes following discounted 
 expected utility over (possibly) infinite sequence of interventions: 
 

 
 
• For large α, the optimal policy is Markovian in nature and is characterized by a control 
 region, a complementary continuation region and a set of optimal actions that can be taken 
 in control region 
 
• For the discrete time Markovian policy, it reduces to the well known Bellman equation: 
 

  
 

2Courtesy:  ‘Hamiltonian Approach to Dynamic Economics’, D. Cass and K. Shell 
3Courtesy: ‘Optimal Consumption of a generalized Geometric Brownian Motion with Fixed and Variable Intervention Costs’, S. Baccarin 
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Economic Utility and Entropy 
  
 
• Repeated Interaction model – Actions in the control region, Measurements in the 
 continuation region (Shah 2013) 
 
• Lindblad Dynamics yield the following in the energy eigenbasis: 
 

 
 
 
 
• The first order linear DE has the solution: 
 
 

 
• Change in Von Neumann Entropy in an action interaction takes form of Bellman Equation: 
 
 
 
 
• Under the assumptions made, the maximum of the ‘Entropic Utility’ above is obtained when 
 entropy production per interaction (Δσ) is minimum.    
 

• Thus maximizing path diversity corresponds directly to maximizing the Entropic Utility   
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Current Work – Quantum Brownian Particle in a Box4 
  
 
• Recent studies on phase diagram of particle confined to a finite binding chain coupled to 
 ohmic dissipative bath  
 
• Caldeira – Leggett model for general dissipative dynamics of a quantum particle interacting 
 with a heat bath 
 
• Hard wall boundary conditions affect the phase diagram of the confined particle 
 

 
 
 
 
 
 
 
 
 
• The phase localization is sharpest when the system-bath coupling is critical (the phase 
 transition point) 
 
• Results agree with behavior of confined brownian particle under causal entropic forces 

 

                                              4Courtesy: ‘Phase Diagram of the Dissipative Quantum Particle in a Box’, J. Sabio, L.Borda, F. Guinea and F. Sols  



Current Work – Emergence of Criticality 
  
• Various studies in neuro-imaging suggest link between effective brain dynamics and critical 
 behavior of physical systems (Kitzbichler et al. 2009) 
 
• System – Bath coupling μC determines system evolution when all other parameters held 
 constant, similar to the ratio (TC  /TR ) in causal entropic forces 
 
• Optimizing Entropic Utility in conjunction with First law yields: 
 

 
 
• Condition of Thermodynamic  stability: 
 
 
• Using Total differential of Entropy at constant Pressure P and number of particles N with the 
 above conditions yields: 
 
 
 
• The stable point is indeed the critical point of phase transition as the latent heat of transition 
 (ΛV) → 0 at the point. 
 
• A more concrete and rigorous analysis using critical exponents furnished by numerical 
 renormalization group techniques is under way 
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Conclusions 
  
 
• Origin of path based entropic forces explained for Markovian projective interactions in 
 nonequilibrium dissipative processes  
 
• Established duality between maximizing expected utility (Entropic Utility) and maximizing 
 path diversity 
 
•  Importance of system-bath coupling strength in determining system behavior and evidence 
 of critical system dynamics at the optimal coupling. 
 
• No need to explicitly specify utilities of actions which the system tries to maximize due to the 
 very nature of the dissipative process at optimal coupling 
 
• Attempts under way to understand emergence of SOC (Self organized criticality) in complex 
 systems in the current framework of dissipative open quantum systems 
 
 
 

 



Thank You! 

     
 


