Artificial Recognition System

Development and Evaluation

Samer Schaat, Alexander Wendt, Matthias Jakubec, Friedrich Gelbard, Lukas Herret, and Dietmar Dietrich
Artificial Recognition System (ARS) Project

- General-purpose model of human information processing for the usage in various artificial systems

- Humanoid agents in a virtual world

 Body
 Psyche
 Decision unit (ARS model)

- Human-Robot Interaction (Kismet)
- Evacuation Simulation (ESCAPES)
Key Features of the ARS Approach

- Functional model

 Generative approach: describing functions not behavior → *generic, flexible*

- Layered description model

 Appropriate means of description for different aspects (neurons, neurosymbolics, psyche)

- Holistic and unitary model

 Consistent and coherent integration of basic aspects (motivation, emotion, planning...)

- Top-down approach

 Concretize abstract functions incrementally, starting with psychic layer

- Bionic and interdisciplinary approach

 Translate knowledge into technical models
Basic question:

How to develop and evaluate such a model?
Challenges

- Restricted accessibility of mind’s functioning
- Interdisciplinary understanding and knowledge translation
- Complexity in description and explanation
Restricted Accessibility of the Mind

- Various ways to get information about the mind’s functioning
- Relevant knowledge for our objective? Right level (psyche)?
- Cannot be used directly
- Interpretation and knowledge translation required → Experts needed

http://de.wikipedia.org/wiki/Elektroenzephalografie
http://homepages.uni-tuebingen.de/karnath/Research.html
http://www.edgehill.ac.uk/psychology/research-participation/
Interdisciplinary Understanding

- Regular, intensive collaboration
- Different concepts, vocabulary....?
Complexity and Explanation

- Right level, relevant knowledge?
- Not only on neuronal level, also on psychic level
- Interplay of various factors determine behavior
Case-driven Agent-based Simulation

Combination of

• Casuistics for interdisciplinary collaboration
• UC-based requirement analysis for deterministic structuring
• Agent-based simulation as a evaluation framework
Step 1: Describe phenomena and assumptions

- Platform and tool for interdisciplinary collaboration
- Exemplify and discuss research question with a concrete *exemplary* case
e.g. How two hungry agents behave in front of a food source (eat, share...)
- Enables stating (and testing) concrete assumptions
 (e.g. the role of emotions, drives, and norms)
- Avoids drifting into abstract discussions
- Embodies and integrates theories from different disciplines to explain
 behavior
 State of the art, experts’ interpretation of real world conditions
- But: indeterministic, gaps in assumptions, inconsistent \(\rightarrow\) no direct usage
Step 2: Analysis and Structuring

- Clarify the exemplary case
 - Explication of assumptions
 - Consistent description

- Structure to deterministic description
 - Causal function description
 - Data determinants of behavior *(Memories, personality, environment, internal state)*

- Simulation-case (SC) enables
 - Requirements analysis
 - Computational model
 - Test plan for evaluation
Step 3: Data and Functional Model

- Previous steps enable
 - Requirements statement
 - Algorithmic description of functions
 - Modelling of knowledge representation

- Specify function modules, interfaces, data
 Adaption or extension?

- Implemented in MASON (Java) and Protégé (Ontology)
Step 4: Evaluation

- Simulation-case as test-template → parameterize simulation according to scenarios
- Does the functions generate and data determine behavior as expected?
- How is the behavior generated?
- Test our hypotheses’ predictability
 - Are the assumptions of exemplary case valid?
 - Does the interplay of specified factors (e.g. emotions, drives, norms) generate the expected behavior?
 - Does the specified data determine behavior (change)?
- Unexpected behavior or state → analysis on different levels → feedback cycles
Conclusion

- Feedback cycles
 - Possibility a, b: mistake in model translation
 - Possibility c: inconsistent in or between theories
- Bridge disciplines, test knowledge translation
- Concretize testable assumptions from other disciplines
- Structure interdisciplinary knowledge to a causal model and test plan
- SC scenarios \rightarrow model calibration
- Stable model? \rightarrow sensitivity analysis!
- Premises for model application in specific domains \rightarrow Outlook
Thank you!