

UNIVERSITAT WIEN Vienna University of Technology Institut für Computertechnik Institute of Computer Technology

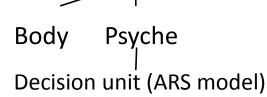
Artificial Recognition System

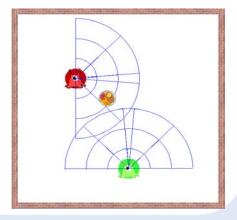
Development and Evaluation

<u>Samer Schaat</u>, Alexander Wendt, Matthias Jakubec, Friedrich Gelbard, Lukas Herret, and Dietmar Dietrich

Artificial Recognition System (ARS) Project

 General-purpose model of human information processing for the usage in various artificial systems




Human-Robot Interaction (Kismet)

Evacuation Simulation (ESCAPES)

Humanoid agents in a virtual world

Key Features of the ARS Approach

Functional model

Generative approach: describing functions not behavior \rightarrow generic, flexible

Layered description model

Appropriate means of description for different aspects (neurons, neurosymbolics, psyche)

Holistic and unitary model

Consistent and coherent integration of basic aspects (motivation, emotion, planning...)

Top-down approach

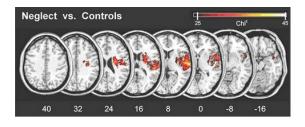
Concretize abstract functions incrementally, starting with psychic layer

Bionic and interdisciplinary approach

Translate knowledge into technical models

Basic question:

How to develop and evaluate such a model?


Challenges

- Restricted accessibility of mind's functioning
- Interdisciplinary understanding and knowledge translation
- Complexity in description and explanation

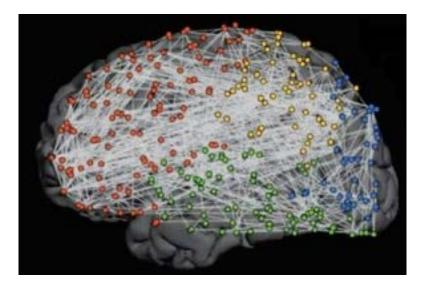
Restricted Accessibility of the Mind

- Various ways to get information about the mind's functioning
- Relevant knowledge for our objective? Right level (psyche)?
- Cannot be used directly
- Interpretation and knowledge translation required → Experts needed

http://de.wikipedia.org/wiki/Elektroenzephalografie http://homepages.uni-tuebingen.de/karnath/Research.html http://www.edgehill.ac.uk/psychology/research-participation/

Interdisciplinary Understanding

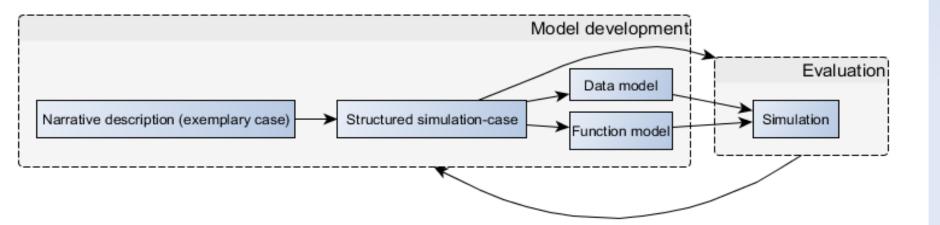
- Regular, intensive collaboration
- Different concepts, vocabulary....?



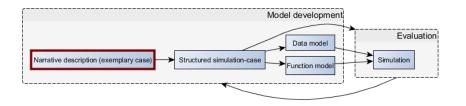
http://variationsphase.de/vp/2012/10/misunderstanding/

Complexity and Explanation

- Right level, relevant knowledge?
- Not only on neuronal level, also on psychic level
- Interplay of various factors determine behavior

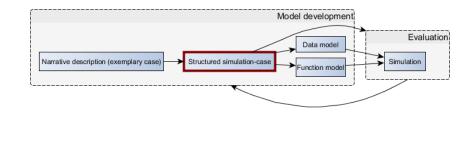


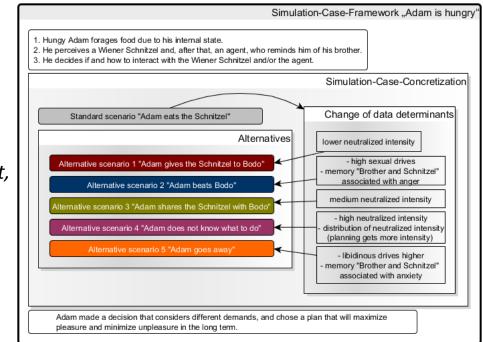
Case-driven Agent-based Simulation


Combination of

- Casuistics for interdisciplinary collaboration
- UC-based requirement analysis for deterministic structuring
- Agent-based simulation as a evaluation framework

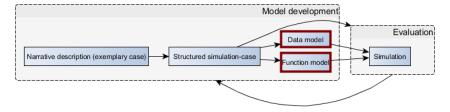
Step 1: Describe phenomena and assumptions

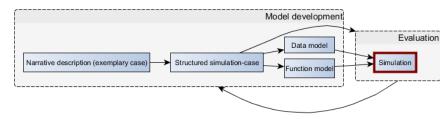

- Platform and tool for interdisciplinary collaboration
- Exemplify and discuss research question with a concrete *exemplary* case
 e.g. How two hungry agents behave in front of a food source (eat, share...)
- Enables stating (and testing) concrete assumptions (e.g. the role of emotions, drives, and norms)
- Avoids drifting into abstract discussions
- Embodies and integrate theories from different disciplines to explain behavior
 State of the art, experts' interpretation of real world conditions
- But: indeterministic, gaps in assumptions, inconsistent \rightarrow no direct usage



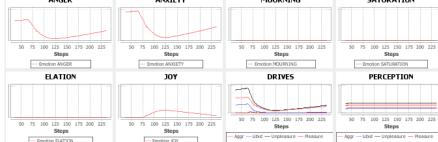
Step 2: Analysis and Structuring

- Clarify the exemplary case
 - Explication of assumptions
 - Consistent description
- Structure to deterministic description
 - Causal function description
 - Data determinants of behavior (Memories, personality, environment, internal state)
- Simulation-case (SC) enables
 - Requirements analysis
 - Computational model
 - Test plan for evaluation

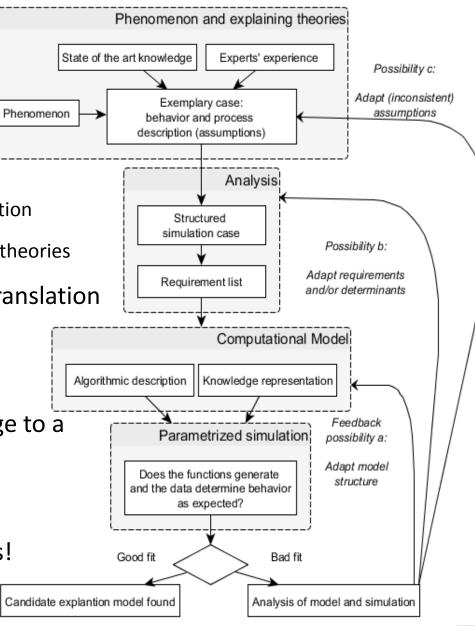



Step 3: Data and Functional Model

- Previous steps enable
 - Requirements statement
 - Algorithmic description of functions
 - Modelling of knowledge representation
- Specify function modules, interfaces, data Adaption or extension?
- Implemented in MASON (Java) and Protégé (Ontology)



Step 4: Evaluation


- Simulation-case as test-template → parameterize simulation according to scenarios
 ANGER ANGER
- Does the functions generate and data determine behavior as expected?
- How is the behavior generated?
- Test our hypotheses' predictability
 - Are the assumptions of exemplary case valid?
 - Does the interplay of specified factors (e.g. emotions, drives, norms) generate the expected behavior?
 - Does the specified data determine behavior (change)?
- Unexpected behavior or state → analysis on different levels → feedback cycles

Conclusion

- Feedback cycles
 - Possibility a, b: mistake in model translation
 - Possibility c: inconsistent in or between theories
- Bridge disciplines, test knowledge translation
- Concretize testable assumptions from other disciplines
- Structure interdisciplinary knowledge to a causal model and test plan
- SC scenarios → model calibration
- Stable model? → sensitivity analysis!
- Premises for model application in specific domains → Outlook

Thank you!

