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 Memory [ICCM 10]
 Procedural (rule)
 Declarative (semantic/episodic) [CogSci 14]

 Constraint
 Distributed vectors [AGI 14a]

 Problem solving
 Preference based decisions [AGI 11]

 Impasse-driven reflection [AGI 13]

 Decision-theoretic (POMDP) [BICA 11b]

 Theory of Mind [AGI 13, AGI 14b]

 Learning [ICCM 13]
 Concept (supervised/unsupervised)
 Episodic [CogSci 14]

 Reinforcement [AGI 12a, AGI 14b]

 Action/transition models [AGI 12a]

 Models of other agents [AGI 14b]

 Perceptual (including maps in SLAM)

Overall Progress on Sigma
 Mental imagery [BICA 11a; AGI 12b]

 1-3D continuous imagery buffer
 Object transformation
 Feature & relationship detection

 Perception
 Object recognition (CRFs) [BICA 11b]

 Isolated word recognition (HMMs)
 Localization [BICA 11b]

 Natural language
 Question answering (selection)
 Word sense disambiguation [ICCM 13]

 Part of speech tagging [ICCM 13]

 Graph integration [BICA 11b]
 CRF + Localization + POMDP

 Optimization [ICCM 12]

Some of these are still just beginningsSome of these are still just beginnings
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 Constructed in layers
 In analogy to computer systems

The Structure of Sigma
Computer System

Computer
Architecture
Computer

Architecture

Microcode
Architecture
Microcode

Architecture
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Programs & 
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HardwareHardware

Memory & ReasoningMemory & ReasoningInputInput Decisions & LearningDecisions & Learning OutputOutput

Cognitive Architecture:
Predicates
Conditionals
Nested control structure

Graph ModificationGraph ModificationGraph SolutionGraph Solution
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Graphical models
Piecewise-linear functions
Gradient-descent learning
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Graphical
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Hybrid: Discrete + Continuous Information
Mixed: Symbolic + Probabilistic Processing
Hybrid: Discrete + Continuous Information
Mixed: Symbolic + Probabilistic Processing
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Reinforcement Learning
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Reinforcement Learning

● We assume here:
– Transition and reward functions are known
– States and rewards are observable
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Abstract Negotiation Domain

● Two agents, A and B
– A learns
– B does not

● Negotiating over an allocation of fruit: apples and oranges
– Alternate modifying the allocation on the table
– Each can accept the current allocation on the table, ending the negotiation
– Each has an individual reward function depending on the final allocation



11

Single-Agent RL
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Multiagent RL

● Operator-B is not under A's decision-making control
– But it affects A's expected reward
– How should A model B's behavior within its learning?
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Multiagent RL: No model of B

● No model of the other agent
– Treat agent as part of the environmental dynamics
– e.g., Littman, 1994



14

Multiagent RL: No model of B

● No model of the other agent
– Treat agent as part of the environmental dynamics
– e.g., Littman, 1994

???
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Multiagent RL: Stationary policy model of B

● Model agent as following a fixed stochastic behavior
– Learn a stationary policy model
– e.g., Hu & Wellman, 1998 & 2001



16

Multiagent RL: RL model of B

● Model agent as maximizing a reward function, drawn from finite subset
– Treat agent as one of a set of candidate agent types
– e.g., Gmytrasiewicz & Doshi, 2005; Pynadath & Marsella, 2005

-B
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Multiagent RL: RL model of B

● Model agent as maximizing a reward function, drawn from finite subset
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– e.g., Gmytrasiewicz & Doshi, 2005; Pynadath & Marsella, 2005

-B



19

Multiagent RL: IRL of B's Reward

● Model agent as maximizing a reward function, drawn from entire set
– Inverse Reinforcement Learning (IRL) to infer B's reward
– e.g., Ng & Russell, 2000

-B
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Multiagent RL: IRL of B's Reward

● Model agent as maximizing a reward function, drawn from entire set
– Inverse Reinforcement Learning (IRL) to infer B's reward
– e.g., Ng & Russell, 2000
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Results

● The four multiagent RL methods all converge to (roughly) optimal
– All four Q functions are capable of representing the optimal policy

● B seeks the allocation that maximizes its reward
● It thus follows a stationary policy, with some noise

Model of B None Stationary 
Policy

Reward 
Subset

IRL

Msgs/decision 445 483 675 587

Msgs/cycle 306 309 1,343 560
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Conclusion

● Sigma provides general support for multiagent reinforcement learning
– Reuse the same gradient-descent mechanism
– Change the underlying graph with different model structure of other agent
– IRL + RL provides a novel multiagent RL

● Future work
– Multiagent RL in both agents
– Analyze the behaviors across all possible combinations
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