USClnstitute for
Creative Technologies

University of Southern California

Reinforcement Learning for
Adaptive Theory of Mind
in the Sigma Cognitive Architecture

David V. Pynadath, Paul S. Rosenbloom,
Stacy C. Marsella

The work depicted here was sponsored by the U.S. Army. Statements and opinions expresse’ ——=
do not necessarily reflect the position or the policy of the United States Government, and WA R ‘
official endorsement should be inferred.




Overall Progress on Sigma

" Memory [iccm 10] = Mental imagery [BICA 11a; AGI 12b]
" Procedural (rule) = 1-3D continuous imagery buffer
" Declarative (semantic/episodic) [CogSci 14] = Obiject transformation
= (Constraint " Feature & relationship detection
= Distributed vectors [Aci 14a] “  Perception
= Problem solving = Object recognition (CRFs) [5icA 11b]
" Preference based decisions [2ci 11] = |solated word recognition (HMMSs)
" Impasse-driven reflection (aci 13 = Localization [zica 11]
= Decision-theoretic (POMDP) [zica 11b] .

Natural language
= Question answering (selection)

" Learning [iccv 13] = Word sense disambiguation jccu 13
= Concept (supervised/unsupervised) = Part of speech tagging rcci 13

" EDiSOdiC [CogSci 14]

= [ Reinforcement [Aci 12a, AGI 14b] ]
= Action/transition models [2ci 122
" [ Models of other agents jaci 14b]] " Optimization [ccm 12]
" Perceptual (including maps in SLAM)

=(_Theory of Mind [AGI 13. AGI 14b] ]

* Graph integration [BicA 110]
" CRF + Localization + POMDP
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The Structure of Sigma

Computer System Y. Cognitive System

Programs &

Services Knowledge & Skills

= Constructed in layers
Computer
= In analogy to computer systems Architecture

Microcode
Architecture

Cognitive
Architecture

Graphical
Architecture

Hardware

Lisp

Cognitive Architecture:
Predicates
Conditionals

: Memory & Reasoning | Decisions & Learning
Nested control structure

Graphical Architecture:
Graphical models
Piecewise-linear functions
Gradient-descent learning

Graph Solution Graph Modification
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Reinforcement Learning
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Reinforcement Learning

« We assume here;

— Transition and reward functions are known

— States and rewards are observable
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Reinforcement Learning
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Reinforcement Learning
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Reinforcement Learning
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Reinforcement Learning
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Abstract Negotiation Domain

« Twoagents, Aand B

- Alearns
— Bdoes not

* Negotiating over an allocation of fruit: apples and oranges

- Alternate modifying the allocation on the table
- Each can accept the current allocation on the table, ending the negotiation

- Each has an individual reward function depending on the final allocation
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Single-Agent RL
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Multiagent RL
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» Operator-B is not under A's decision-making control
- But it affects A's expected reward

- How should A model B's behavior within its learning?
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Multiagent RL: No model of B
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 No model of the other agent

- Treat agent as part of the environmental dynamics
- e.g., Littman, 1994
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Multiagent RL: No model of B
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Multiagent RL: Stationary policy model of B
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* Model agent as following a fixed stochastic behavior

- Learn a stationary policy model
- e.g., Hu & Wellman, 1998 & 2001
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Multiagent RL: RL model of B
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* Model agent as maximizing a reward function, drawn from finite subset
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- Treat agent as one of a set of candidate agent types
- e.g., Gmytrasiewicz & Doshi, 2005; Pynadath & Marsella, 2005
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Multiagent RL: RL model of B
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 Model agent as maximizing a reward function, drawn from finite subset

- Treat agent as one of a set of candidate agent types
- e.g., Gmytrasiewicz & Doshi, 2005; Pynadath & Marsella, 2005
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Multiagent RL: RL model of B
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- Treat agent as one of a set of candidate agent types
- e.g., Gmytrasiewicz & Doshi, 2005; Pynadath & Marsella, 2005
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Multiagent RL: IRL of B's Reward
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* Model agent as maximizing a reward function, drawn from entire set

- Inverse Reinforcement Learning (IRL) to infer B's reward
- e.g., Ng & Russell, 2000
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Multiagent RL: IRL of B's Reward
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* Model agent as maximizing a reward function, drawn from entire set

- Inverse Reinforcement Learning (IRL) to infer B's reward
- e.g., Ng & Russell, 2000
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Results

« The four multiagent RL methods all converge to (roughly) optimal

- All four Q functions are capable of representing the optimal policy

B seeks the allocation that maximizes its reward

|t thus follows a stationary policy, with some noise

Model of B None Stationary  Reward IRL
Policy Subset

Msgs/decision 445 483 675 587

Msgs/cycle 306 309 1,343 560
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Conclusion

e Sigma provides general support for multiagent reinforcement learning

- Reuse the same gradient-descent mechanism
- Change the underlying graph with different model structure of other agent
- IRL + RL provides a novel multiagent RL

e Future work

- Multiagent RL in both agents

- Analyze the behaviors across all possible combinations
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