Making Universal Induction Efficient by Specialization

AGI @ Quebec
Alexey Potapov, Sergey Rodionov
{potapov, rodionov}@aideus.com
2014
(General) intelligence is an agent’s ability to efficiently achieve goals in a wide range of environments with insufficient knowledge and resources.
Gap between Universal and Pragmatic Methods

• Universal methods
 • can work in arbitrary computable environment
 • computationally infeasible
 • approximations are either inefficient or not universal

• Pragmatic methods
 • work in non-toy environments
 • set of environments is highly restricted

=> Bridging this gap is necessary
Key Idea

• Humans create narrow methods, which efficiently solve arbitrary recurring problems
• Generality should be achieved not by a single uniform method solving any problem in the same fashion, but by automatic construction of (non-universal) efficient methods
• Program specialization is the appropriate concept*, which relates general and narrow intelligence methods
• However, no analysis of possible specialization of concrete models of universal intelligence has been given yet.

Program Specialization

• Let $p_L(x,y)$ be some program (in some language L) with two arguments
• Specializer $spec_R$ is such program (in some language R) accepting p_L and x_0 that
 \[(\forall y)spec_R(p_L, x_0)(y) = p_L(x_0, y)\]
• $spec_R(p_L, x_0)$ is the result of deep transformation of p_L that can be much more efficient than $p(x_0, .)$

Futamura-Turchin projections

\[(\forall x)spec_R(intL, p_L)(x) = intL(p_L, x)\]
\[(\forall p_L, x)spec_R(spec_R, intL)(p_L)(x) = intL(p_L, x)\]
\[(\forall intL)spec_R(spec_R, spec_R)(intL) = comp_{L\rightarrow R}\]
Universal Mass Induction

- Let \(\{x_i\}_{i=1}^n \) be the set of strings
- An universal method cannot be applied to mass problems since typically
 \[K_U(x_1x_2...x_n) \ll \sum_{i=1}^n K_U(x_i) \]
 where \(K \) is Kolmogorov complexity on universal machine \(U \)
- However, \(K_U(x_1x_2...x_n) \approx \min_S \left(l(S) + \sum_{i=1}^n K_U(x_i \mid S) \right) \) can be true
- One can search for models \(y_i^* = \arg \min_{y: S(y) = x_i} l(y) \) for each \(x_i \) independently
 within some best representation \(S^* = \arg \min_S \left(l(S) + \sum_{i=1}^n l(y_i^*) \right) \)

If \(S \) is not an universal program than this search can be made (much) more efficient than exhaustive search
Specialization of Universal Induction

• Universal mass induction consists of two procedures
 • Search for models
 \[MSearch(S, x_i) \rightarrow y_i^* = \arg \min_{y : S(y) = x_i} l(y) \]
 • Search for representations
 \[RSearch(x_1, \ldots, x_n) \rightarrow S^* = \arg \min_S \left(l(S) + \sum_{i=1}^{n} l(y_i^*) \right) \]
 • \(MSearch(S, x) \) is executed for different \(x \) with same \(S \)
 • This search cannot be non-exhaustive for any \(S \), but it can be efficient for some of them
 • One can consider computationally efficient projection
 \[spec(MSearch, S): (\forall x)spec(MSearch, S)(x) = MSearch(S, x) \]
Approach to Specialization

- Direct specialization of $MSearch(S, x)$ w.r.t. some given S^*
- No general techniques for exponential speedup exists
- And how to get S? $RSearch$ is still needed
- Find $S' = spec(MSearch(S, x), S^*)$ simultaneously with S^*
- Main properties of S, S': $$(\forall x) S(S'(x)) = x$$
 $$l(S) + \sum_i l(S'(x_i)) \rightarrow \text{min}$$

- S is a generative representation (decoding)
- S' is a descriptive representation (encoding)
 - S' is also the result of specialization of the search for generative models, so in general it can include some sort of optimized search
- Simultaneous search for S and S' will be referred to as SS'-search
Combinatory Logic

• $K x y \to x$
 ($((K x) y)$)

• $S x y z \to x z (y z)$
 (‘(((S x) y) z))

 – $S K K x \to K x (K x) \to x$
 $I = S K K$
 $I x \to x$

 – $(S (K (S I)) (S (K K) I) x y) \to \ldots \to y x$

 – and other combinators: B, b, W, M, J, C, T

• In lambda-calculus

 – $\lambda x.x == I$
 $\lambda x. \lambda y.(y x) == S (K (S I)) (S (K K) I)$
Mass Induction in CL

- Data strings x_i with common regularities
- One representation S
- Individual models y_i

- $MSearch$ enumerates all models to find the shortest appropriate model: $S y_i = x_i$
- $RSearch$ enumerates all S and calls $MSearch$ for each S
SS'-Search example

- $S' = KC$
- S and S' are enumerated together
- S' is used instead of $MSearch$ to obtain y_i

Data strings x_i with common regularities

Individual models y_i

One representation S
Genetic programming for Mass Induction

- **RSearch+MSearch**
 - Genome is composed of S and $\{y_i\}$ each of which corresponds to a separate chromosome
- **SS'-Search**
 - Genome is composed of two chromosomes – S and S'
 - Each chromosome is subjected to crossover independently
 - Implementation of GP for CL is described in our previous paper

Experimental results

- Simple redundancy

SS'-Search

\[
\begin{align*}
1 & \\
1 & \\
1 & \\
\vdots & \\
1 & \\
\end{align*}
\]

\[S \rightarrow W110010 \rightarrow S' \rightarrow J(bMJK)T\]

RSearch

\[
\begin{align*}
1 & \\
1 & \\
1 & \\
\vdots & \\
1 & \\
\end{align*}
\]

\[11100101 \rightarrow 11100101 \rightarrow 11100101 \rightarrow 11100101 \rightarrow 0101\]

- *RSearch* fails to find optimal solution even in this simple case
- *SS'-Search* appears to be efficient; *S'* constructs correct models
- This can seem strange since *S'* is not simpler than \(y_i\), but *SS'-Search* allows for incremental improvement
Experimental results

• Poorly compressible data

\[
\begin{array}{c}
101101101010 \\
001101001011 \\
111111110011 \\
\vdots \\
011011010111 \\
\end{array}
\quad \begin{array}{c}
0101101101010 \\
000110100111 \\
011111110011 \\
\vdots \\
0011011010111 \\
\end{array}
\]

\textit{SS'-Search} extracts information from data to construct models, while \textit{RSearch} searches for models blindly.

• \textit{RSearch} fails to find any precise solution
Experimental results

- Simple common regularity

\[\text{SS}'-\text{Search} \]

\[\begin{array}{c}
0000 \\
0001 \\
0010 \\
\ldots \\
1111 \\
\end{array} \xrightarrow{\text{BBB(BM)}} \begin{array}{c}
00000000 \\
00010001 \\
00100010 \\
\ldots \\
11111111 \\
\end{array} \]

\[\text{S'} \]

\[\begin{array}{c}
00000000 \\
00010001 \\
00100010 \\
\ldots \\
11111111 \\
\end{array} \xrightarrow{\text{B(SJCK)}} \begin{array}{c}
0000 \\
0001 \\
0010 \\
\ldots \\
1111 \\
\end{array} \]

- Both methods successfully found good solutions
- \text{RSearch} requires low complexity from both representations and models
Experimental results

- More complex regularities

```
SS'-Search
S
B(S(BST))M
S'
JKK

RSearch
159951
248842
678876
...
179971
```
Experimental results

• More complex regularities

SS'-Search

S
KBb
W
S'
BK

RSearch

30718
01232
68956
...
78214

307718
012232
689956
...
782214
Conclusion

• Ideas of universal induction, representations, and program specialization were combined.
• Specialization of universal (mass) induction w.r.t. some (generative) representation yields descriptive representations.
• These descriptive representations being not Turing-complete can construct data models much more efficient than universal induction methods.
• Also, automatic simultaneous construction of generative and descriptive representations appeared to be more efficient than construction of generative representations and models, so explicit specialization seems to be not necessary here.
• Can RSearch be more efficient than SS'-Search?
Thank you for attention

AGI @ Quebec

Alexey Potapov, Sergey Rodionov

{potapov, rodionov}@aideus.com

2014