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Abstract. Humans and other animals are often touted as examples of
systems that possess general intelligence. However, rarely if ever do they
achieve high levels of intelligence and autonomy on their own: they are
raised by parents and caregivers in a society with peers and seniors,
who serve as teachers and examples. Current methods for developing
artificial learning systems typically do not account for this. This paper
gives a taxonomy of the main methods for raising / educating naturally
intelligent systems and provides examples for how these might be applied
to artificial systems. The methods are heuristic rewarding, decomposition,
simplification, situation selection, teleoperation, demonstration, coaching,
explanation, and cooperation. We argue that such tutoring methods that
provide assistance in the learning process can be expected to have great
benefits when properly applied to certain kinds of artificial systems.
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1 Introduction

Humans grow and learn under the supervision of parents or other caregivers, in
a society with peers and seniors, who serve as teachers and examples. We don’t
confine our children to libraries and hope that they’ll figure out how to read. Yet
it seems that often we expect something similar from our artificial systems: In a
typical machine learning project, first a well-defined target task is selected that
we would like our artificial learner to accomplish automatically. Humans identify
and extract the most important features for their learning system, including
variables and their target operating ranges, reward functions, etc. Next, the
system is released into (a simulation of) the target environment to attempt to
accomplish the target task, possibly with the help of randomly selected, human
annotated examples. While this paradigm has lead to many useful applications,
it can only be applied to tasks and environments that are well defined at the
system’s design time, and they are confined to only such tasks, and to address
any of them requires starting a new cycle of manual system creation.

The goal in AGI is how to build systems that are not merely good at a single
task that is known beforehand, but systems that can perform autonomously on

⋆ We want to thank Elsa Eiríksdóttir for educating us about education psychology.
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a very wide range of tasks, in a wide range of environments, many of which the
system may never have encountered. Our working definition of intelligence is
“the ability to autonomously achieve complex goals in a wide range of complex

environments with constrained resources”. Intelligent systems should be able to
identify and extract the most important features for their learning process auto-
matically. So far, this goal has remained unattainable. We often look to humans
and other intelligent animals as proof that such general intelligence is indeed
possible, but none of them start their lives with their potential for intelligence
and autonomy fully realized. Unlike most current artificial systems, when we
were babies we were not placed directly into the particular environment where
we are later expected to perform. We were raised.

We can distinguish between a system’s potential intelligence and its realized

intelligence. Realized intelligence is the amount of intelligence, by some (un-
specified) measure, that the system exhibits at any particular moment in time.
Potential intelligence is the maximum possible realized intelligence that the sys-
tem might achieve in its lifetime. Human babies possess a potential intelligence
that will eventually allow them to be as intelligent as an adult human (the pin-
nacle of currently existing general intelligence), but their realized intelligence is
initially fairly low. They will fail at some of the most rudimentary tasks that
they will be capable of in the future; when left to their own devices they soon die.
How much of their potential is realized depends in large part by how they are
raised. Some aspiring AGI systems (cf. AERA [16], NARS [26] and OpenCog [8])
are similarly envisioned to start from humble beginnings and acquire the ability
to behave well through interaction with complex environments. It has even been
suggested to use a human-like preschool environment to evaluate the intelligence
and developmental stage of proto-AGI [9].

The goal of raising a system is to help it realize as much of its potential intel-
ligence as possible as quickly as possible. Given a certain base-level of potential
intelligence, a raised system should reach a higher level of realized intelligence
than one that is completely left to its own devices. Or, considered another way:
To reach a certain target level of intelligence, e.g. “human level”, a system may
require less potential intelligence if it is raised well.

There are many aspects to raising an intelligent system. In this paper we
focus on the aspect of providing assistance in the learning of new tasks, which
we’ll refer to as tutoring. We discuss ways in which the upbringing of (human)
animals has been or could be translated to the artificial domain towards this
end. We aim to provide a taxonomy of tutoring methods for AI, articulate some
of the associated requirements this puts on the system’s capabilities and discuss
the implications and future work.

2 Tutoring Techniques

In this section we describe a number of tutoring techniques that can help raise
intelligent systems: heuristic rewarding, decomposition, simplification, situation
selection, teleoperation, demonstration, coaching, explanation and cooperation.
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We give anthropocentric illustrations and review prior work in machine learning
and AI. We additionally provide examples of how these methods might be imple-
mented to solve three simple reinforcement learning (RL) tasks using a tabular
Q-learning algorithm [22]: 1) a 2D navigation task, 2) a small sliding puzzle and
3) a compound task where the puzzle and navigation task must be solved seri-
ally in a combined state space1. It should be stressed however that this is not
an experimental study, and that the results in Fig. 1 do not imply the general
superiority of one method over another or that they are always beneficial. These
examples are merely meant to provide simple and concrete illustrations of the
presented methods and to show that there are at least some situations in which
they can help.

2.1 Heuristic Rewards

The fact that behavior can be shaped through the use of rewards and punish-
ments is a core tenet of the field of behaviorism and the underlying mechanism
in associative and reinforcement learning [19]. Reinforcement learning is further-
more a useful paradigm for AGI, because it doesn’t require a dedicated supervisor
to constantly provide correct actions. However, acquisition of rewards or avoid-
ance of punishment in many tasks requires a level of proficiency that a beginner
cannot be expected to possess.

Tasks that require a certain level of skill for the learner to receive varied
feedback can be difficult to learn, because it can make the “goodness” of dif-
ferent actions virtually indistinguishable. A tutor can mitigate this problem by
adding more feedback through real-time interaction with the learner [25], by
e.g. rewarding good moves with encouraging words or a monetary reward, or
by teaching heuristics for actions or situations to estimate their “worth”: For in-
stance, capturing an opponent’s piece in chess could be awarded with a number
of imaginary points. This is the central idea behind gamification [7] which has
been successful in helping people to learn by supplementing long term benefits
and understanding with immediate feedback and rewards. Heuristics like these
are also often used in machine learning for game playing, where the final state
and the associated win, loss or draw is the only thing that really matters.

In our own RL example, we have implemented the heuristic rewards approach
by giving higher rewards to good actions than to bad ones. Fig. 1 clearly shows
that this can be hugely beneficial to learning speed. However, care should be
taken that pursuit of these artificial heuristics is not more beneficial than pursuit
of the actual goal. For instance, if too much importance is attached to capturing
pieces in chess, a player may forgo a guaranteed winning move because prolonging
the game may allow the capture of more pieces.

2.2 Decomposition

Part-task training is a well-known strategy in educational psychology that in-
volves the decomposition of the whole task into smaller parts that can be learned

1 Please refer to our technical report for more details [5].
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Fig. 1. Positive results obtained using tutoring techniques to decrease the number of
training steps to reach optimal behavior, plotted on a logarithmic scale. All depicted
improvements were statistically significant (p < 0.0001). Used parameters: {learn rate:
0.05, discount factor: 0.75, ǫ: 0.25, reward: 100, initial Q-values: 0}. For more details
please refer to our technical report [5]. For the heuristic rewards, bad actions were
penalized with −1. Simplification worked by starting with easy starting positions and
for the navigation task a small grid, and gradually increasing difficulty and grid size.
Situation selection was performed by focusing on problem areas one by one.

separately [24]. This approach is often highly beneficial when the whole task is
complex. By decreasing the intrinsic cognitive load of the task, more of the
learner’s cognitive resources can be used for learning [27]. On the other hand,
some of the load is transferred to the tutor, who has to decompose the task in
such a way that the right thing is still learned.

Both decomposition and simplification (see Sec. 2.3) have the tutor design a
curriculum of easier tasks. One example of existing work of curriculum learning
involves the layer-by-layer training of a deep neural network, where each layer’s
task is to extract higher level features from the one before it [4].

One prerequisite for the system’s learning algorithm is that it does not suffer
from catastrophic interference: the phenomenon where an algorithm forgets all
about earlier learned tasks when a new one is learned. Furthermore, a strong
transfer learning ability can be highly beneficial in this setting, because it allows
the system to extract lessons for multiple tasks at once. Incidentally, transfer
learning is greatly aided by variability of training tasks [11] and multitask learn-
ing [6], which could be considered the converse of part-task learning.

We have implemented this divide and conquer tutoring method for learning
the compound task by letting the system train on the navigation and puzzle parts
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separately. Fig. 1 shows that this results in faster learning than just training on
the compound task from the beginning. However, an important consideration
when using this paradigm is how the component tasks reintegrate to form the
compound target task as context can often be important. With Q-learning, prob-
lems can occur when the expected reward of the second part is very different
from the chosen final reward for the first part because this will invalidate the
Q-values learned for it.

2.3 Simplification

When we teach something new, we generally start with easy variants of the
envisioned target task. Task simplification and the subsequent gradual increase
in difficulty until the training task matches the target task is another example
of learning on a curriculum. A similar paradigm called shaping – introduced
by B.F. Skinner [19] – is often used in animal training. This technique has re-
cently been utilized in reinforcement learning [12][20], unsupervised dependency
parsing [21] and deep learning [4][3][10][13].

Simplification is intimately related to decomposition because the component
tasks are simpler than the target task. The difference can intuitively be defined as
follows: a system that can generalize very well could exhibit decent performance
on the target task after learning a simplified version, but not after learning a
single part-task in the decomposition approach.

There are a number of different ways in which we can implement this ap-
proach in our reinforcement learning examples. For the navigation task, we can
decrease the grid size and for either task we can set the start state to be close to
the goal state. Whenever the system has fully learned to achieve the task at the
current level, we increase the difficulty until we reach the target task. Positive
results are shown in Fig. 1. When errors are introduced at a lower difficulty level,
it can be beneficial to decrease the difficulty again.

2.4 Situation Selection

By selecting the situations that a pupil encounters during learning, a tutor can
greatly facilitate the experience. Dwelling in situations that are either far too
simple or difficult can be a massive waste of time. In the previous section, we
saw how choosing easy starting positions could facilitate learning. But at some
point in our training, we often move on from situations that are relatively easy
to ones that we have a disproportionate amount of trouble with. Essentially, we
tend to focus on areas that are the most important to our learning. Identifying
problem areas and getting better at them is often the best way to increase our
overall success in a given task.

A related concept in machine learning is boosting [17] where multiple classi-
fiers are trained and training examples that are misclassified by earlier classifiers
are weighted more. Furthermore, for any multi-component system, it is natural
for developers to focus on strengthening the “weak link” in the chain. However,
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these applications are not considered as raising approaches, because they are not
applied to the finalized system.

The past decade has also seen the rise of Big Data science and the idea that
the quality and quantity of data might be of equal or greater importance than
the capabilities of the learner. The core tenet in the field active machine learning

is to find ways for a learner to actively select data or situations from which it
is believed that the most can be learned [18]. In that sense, situation selection
could be viewed as active teaching.

In our RL examples we can easily identify states in which the system’s be-
havior is erroneous. We can either pick a possibly different trouble state for each
epoch, or we can go through these states one by one and only move on when it is
no longer problematic. Fig. 1 shows that focusing on problem areas can indeed
expedite training. We have also found that it can help to stop the current epoch
and start a new one when the system has wandered into an unproductive situ-
ation. Generally speaking it can save time to avoid situations that are already
mastered and ones that cannot be learned yet.

2.5 Teleoperation

Sometimes it can be difficult to accurately describe an action, because it must
simply be experienced by the learner. In these cases it can be educational if
the tutor can temporarily take control of the learner’s actions through teleoper-

ation [2]. This can be seen when a golf or tennis instructor stands behind the
student and moves their arms for them in the correct way, and similar approaches
have been taken in robotics [15]. Another example might involve a teacher mak-
ing moves for his student in a chess game. In one recent project an artificial tutor
learned when to make moves for his student in several video games [23].

Selecting an action for the learner must occur at the right level of abstraction,
where the tutor can actually affect the learner directly. For instance, a tutor
cannot make the student’s brain take the required steps for it to consider a
certain chess move good, but he can make the move for the student. Forcing
a student’s hand can also be a method for setting up situations that can be
educational, as we have seen in Sections 2.2, 2.3 and 2.4 where the goal was to
start from states that are easy, problematic or require a certain subskill.

Fig. 1 shows that forcing our Q-learner to take the right actions can greatly
reduce training times. This should come as no surprise, because unlike humans
in tennis the Q-learner has no trouble reproducing the steps that it was forced to
perform during training. However, it is worth noting that this only works when
the “correct” Q-value for the optimal state-action pair is larger than the initial
Q-values for the other actions in that state.

2.6 Demonstration

Human and many other animal infants are innately predisposed towards imitat-
ing those around them. Teaching by example or demonstration then is a very
powerful educational technique. When students have the capability to map the
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actions of others onto their own, observing someone else perform a task can tell
them how to do it themselves. Observing masters of the field is a common teach-
ing technique in many disciplines. Additionally, sometimes “do as I do” is simply
the easiest way to defne a task. Apprenticeship learning – where the learner
deduces its goal via inverse reinforcement learning of the reward function in a
tutor’s demonstration – has been used to great success [1][16].

The machine learning subfield of imitation learning studies how an artificial
system might learn by imitating a tutor [2]. The emphasis here is usually on how
to design the learner, and it is often assumed that the tutor will be a human who
simply performs the task that we want the system to learn. However, this need
not be the case: Although artificial general intelligence is notoriously difficult to
develop, many AI systems show good performance in specialized domains and
could conceivably function as teachers-by-example for a more generally intelli-
gent system. Furthermore, it is not a given that an optimal demonstration of
the target action(s) is necessarily the optimal teaching signal.

One of the major difficulties in imitation learning is the recognition of the
tutor’s actions and the mapping to the learner’s own capabilities. We cannot
do justice to this complexity in our simple RL examples. Learning by example
in our puzzle task is difficult, because once a tutor moves a tile, the board is
changed and the student cannot simply mimic the move. Of course, it could still
learn from this in the same way that it would with teleoperation (see Sec. 2.5)
or as an apprentice. We’ve augmented the navigation task with two additional
dimensions that signify the system’s displacement from a tutor. At every step,
the tutor first moves to the location of the student (if necessary) and then makes
a step towards the goal. After training with the tutor, we set these two input
dimensions to zero for further training alone and evaluation.

Learning by imitation requires generalization ability or redundancy learning.
We implemented a system of dual Q-learners that focus on different parts of the
state space and vote on the action to take [5] (see Fig. 1). Since the target task
and learning to imitate are largely independent, this approach can be combined
very well with decomposition and simplification methods. Rewarding successful
imitation can also be beneficial.

2.7 Coaching

A lot of our education simply consists of telling students what to do in what
situation. Real-time instruction like this is especially common in coaching during
some sporting events, where the coach may shout out the actions that he wants
his player to perform. We can also see this approach in action when a teacher
tries to walk his student to a math problem step by step.

Learning by direct instruction is essentially the approach that is taken in
supervised learning. The learning algorithm is presented with both the situation
and the right response to it. In real life, instruction is complicated by the fact that
complex language must be mapped unto actions that can actually be performed.

In our RL example, coaching was implemented as an extra dimension on the
input space that will tell the system what action to take, although the system
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still needs to learn the mapping from instructions to actions (see Fig. 1). This
implementation is very similar to the one for demonstration, but this is mostly
an artifact of the simplicity of our examples. Imitation learning can be done
without the teacher’s active involvement and requires that the system has capa-
bilities to detect other entities, their actions and possibly their goals. Learning
by instruction on the other hand does require the active involvement of a coach
as well as some communication protocol (i.e. language).

2.8 Explanation

When we want our students to learn something new we often explain to them
what to do and how they should approach the situation. This type of explanation
can take the form of imperative “programming” (e.g. “do not move towards a
nearby enemy in a video game”) [14], or it could involve using analogies to
connect students’ existing knowledge to new concepts.

Explanation is an extremely complex tutoring method and requires a wide
array of features on the part of the learner. The learner must meet the same
requirements as for learning by direct instruction, but increased complexity of
offline explanations compared to simple direct action instructions requires more
sophisticated language processing faculties. Furthermore, the learner must have
good memory and retrieval capabilities, and be able to map the explanations
onto situations that he must be able to detect and actions that he can execute.
Finally, prior knowledge must exist to connect the new knowledge to.

Explanations give the system prior knowledge before starting to actually
practice the task, so we could model it by adjusting the initial Q-values in our
RL example. If the explanation specifies what to do in what situation, we could
simply encode that in the Q-table. When using analogy to existing knowledge
in the form of another Q-table for a different task, we could initialize the new
table with the values from the existing one. We have not done this, since simply
initializing the table to the (almost) correct values will show nothing interesting,
and ignores the fact that the real complexity is in recognizing how to map an
explanation onto knowledge that the system can use.

2.9 Cooperation

Finally, one way to teach a task is to simply lend a helping hand and do the
task together initially. This is essentially a combination of making the task eas-
ier, possibly letting the student focus on a single component, and teaching by
example. This type of apprenticeship can be observed in many jobs and is also
employed by predators who will let their young join them on simple hunts.

We often lend our machine learning systems a helping hand by providing
them with correct answers or preprocessing their data, but we don’t usually
intend for the system to eventually learn to take over these tasks itself.

We have not implemented a new example to showcase this approach, because
it is so broad and already partially covered by our examples for task simplification
and teaching by example.
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3 Discussion

Humans and other intelligent animals use a wide variety of educational and
learning techniques to attain their eventual level of adult intelligence. The use-
fulness of these techniques often increases with the complexity of the attempted
task, which makes them particularly relevant in the context of AGI. We have dis-
cussed how these techniques might be applied in an artificial setting, and shown
that (even) in our simple example RL setting they can sometimes be beneficial.
On the other hand design of curricula and heuristics, as well as identification
of problem areas, coaching signals and correct actions are difficult problems.
Modifying the task or environment brings the risk of teaching the wrong thing.
Sometimes a naive approach simply works better.

Furthermore, these approaches require a tutor whose time may be more valu-
able than the learner’s. Human tutors may impose an unwanted speed limit on
interactions, if such constraints are not already applied by the environment or
by the learner himself. No human can match the thousands of steps per second
that a virtual agent in a virtual environment might be able to make. In such a
situation, the reduction in the number of learning steps required to learn a task
may be offset by the fact that training in this way takes more clock time.

However, in some cases we may be able to develop specialized, narrow AI
systems to use for teaching. In a way, this might fulfill the dream of those who
see narrow AI applications as a step towards highly intelligent machines: just
add a system with a high potential for general intelligence and mix. Eventually,
AGIs may of course be raised by other AGIs.

In conclusion, based on our preliminary studies, raising or tutoring intelligent
systems can be worthwhile when the goal is for them to perform complex tasks
in complex environments, provided that the knowledge for task accomplishment
and teaching is available. The concept fits AGI as a glove, provided that future
research can tell us how to teach these advanced systems. In our own future work,
we intend to implement these methods for more complex tasks in an aspiring
AGI system, investigate what tasks and skills such a system should learn to
advance to the required cognitive stages on the road to adult-level intelligence,
and how we can teach them.
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