
On Evaluating Agent Performance in a Fixed Period of Time

José Hernández-Orallo
DSIC, Univ. Politècnica de València,

Camı́ de Vera s/n, 46020 Valencia, Spain. jorallo@dsic.upv.es

Abstract

The evaluation of several agents over a given task in
a finite period of time is a very common problem in
experimental design, statistics, computer science, eco-
nomics and, in general, any experimental science. It
is also crucial for intelligence evaluation. In reinforce-
ment learning, the task is formalised as an interactive
environment with observations, actions and rewards.
Typically, the decision that has to be made by the
agent is a choice among a set of actions, cycle after
cycle. However, in real evaluation scenarios, the time
can be intentionally modulated by the agent. Conse-
quently, agents not only choose an action but they also
choose the time when they want to perform an action.
This is natural in biological systems but it is also an
issue in control. In this paper we revisit the classi-
cal reward aggregating functions which are commonly
used in reinforcement learning and related areas, we
analyse their problems, and we propose a modification
of the average reward to get a consistent measurement
for continuous time.

Introduction

Measuring agent intelligence is one of the pending sub-
tasks (or requirements) in the goal of constructing gen-
eral intelligent artefacts. (LH07) presents a formal def-
inition of intelligence as the evaluated performance in
a broad range of contexts or environments. However,
time is disregarded in their definition. In (HOD09), an
implementation of an anytime intelligence test is en-
deavoured, where time is considered. The introduction
of time in the evaluation has much more implications
than it might seem at first glance. We do not only face
the issue that fast agents score better than slow agents,
but we also need to assess other problems: how can we
evaluate fast and slow agents in the same setting? How
can we deal with intelligent agents that make a shrewd
use of response times to score better?

These problems have not been solved in AI areas
where agent evaluation is custom. For instance, eval-
uating decision-making agents in interactive environ-
ments where observations, actions and rewards take
place has been a well-studied problem in the area of
reinforcement learning (SB98). But, in general, time

(either discrete or continuous) is understood as a vir-
tual time. Even in real applications, where continuous
time appears, any performance evaluation based on re-
wards typically does not consider the decision-making
time of the agents and, to our knowledge, never consid-
ers extreme speed differences between the agents.

In order to illustrate the problem, imagine that a test
(composed of several exercises is passed to several stu-
dents. All exercises deal about the same (previously
unknown) subject, so typically a good student would
improve as s/he does more exercises. Each student re-
ceives the first exercise, works on it and writes the result
and gets an evaluation score or points (e.g. between 0
and 1). Immediately a second exercise is given and the
student works on it similarly. The test goes on until a
(previously unknown) time limit τ is reached.

Consider a test taken in half an hour, where several
students have got different results, as shown in Figure
1. Who is best? We can say that s1 usually scores
better than s2 does but s2 is faster. Let us make the
question a little bit more difficult. What about a third
student s3 only being able to complete five exercises?
From the figure, we can say that it has done all of them
right from almost the beginning. We can also say it is
very slow, but with only two attempts she or he has
been able to find the way to solve the rest of exercises.
And now a more incisive question: what about a fourth
student s4, who does exercises very fast, but at random,
and, eventually, in a series of 5,000 exercises done in the
half an hour is able to score well on 50 of them?

In the previous example we can either accumulate
the results (so students s1, s2, s3 and s4 would get a
total return of 10, 18, 4, 50 respectively) or average the
results by the number of exercises (so we would get an
average return of 2

3 , 3
7 , 4

5 , 1
100 respectively). We can

also consider the physical time (which is equal for all),
and average the results by time, getting a scaling of the
total returns, i.e., 20, 36, 8, 100 points per hour.

An opinion here would be to say that speed and per-
formance are two different things that we should weight
into an equation which matches the context of applica-
tion. In the previous case, if the average by exercises is
v, the number of exercises is n and τ is the total time a
possible formula might be v′ = v×

√
n/τ , giving values

s1 1

0

s2 1

0

1

0
s3

s4 1

0

s5
0

s6 1

0

τ

1

s7 1

0

10

18

4

50

4000

3996000

13

12

3996000

1

4

4950

1

24

5

Figure 1: Several students evaluated in a fixed time.

2.3, 2.26, 1.6 and 1 for students s1, s2, s3 and s4.
The problem is that there is no formula which is

valid in general, for different tasks and kinds of agents.
Consequently, in this setting, the way in which per-
formance is measured is always task-dependent. But
worse, the compensation between v, n and τ is typ-
ically non-linear, making different choices when units
change, or the measure gives too much weight to speed.
Additionally, when τ → ∞ the measure goes to 0 (or
diverges), against the intuition that the larger the time
given the better the evaluation. But the main prob-
lem of using time is that for every function which is
increasing on speed (n/τ), there is always a very fast
agent with a very small average reward, such that it
gets better and better scores. Consider, for instance, a
student s5 who does 4,000,000 exercises at random in
the half an hour, and is able to score 1 in 4,000 of them
and 0 for the rest. The value would be 1

1000 ×
2000
0.5 = 4.

With a very low average performance (1
1000), this stu-

dent gets the best result.
To make things still worse, compare s3 with s6 as

shown in Figure 1. The speed of s6 is more than six
times greater than s3’s, but s3 reaches a state where
results are always 1 in about 10 minutes, while s6 re-
quires about 17 minutes. But if we consider speed, s6
has a value v′ = 16

25 ×
5
0.5 = 5.2 (while it was 1.6 for s3).

But in order to realise that this apparently trivial
problem is a challenging one, consider another case.
Student s7 acts randomly but she or he modulates time
in the following way: whenever the result is 1 then she
or he stops doing exercises. If the result is 0 then more
exercises are performed very quickly until a 1 is ob-
tained. Note that this strategy scores much better than
random in the long term. This means that an oppor-
tunistic use of the times could mangle the measurement
and convey wrong results.

The previous example tries to informally illustrate
the goal and the many problems which arise around
agent evaluation in a finite time τ . Simple alterna-
tives such as using fixed time slots are not reasonable,
since we want to evaluate agents of virtually any speed,
without making them wait. A similar (and simpler) ap-
proach is to set a maximum of cycles n instead of a time

τ , but this makes testing almost unfeasible if we do not
know the speed of the agent in advance (the test could
last miliseconds or years).

As apparently there is no trivial solution, in this pa-
per we want to address the general problem of measur-
ing performance in a time τ under the following setting:

• The overall allotted evaluation time τ is variable and
independent of the environment and agent.

• Agents can take a variable time to make an action,
which can also be part of their policy.

• The environment must react immediately (no delay
time computed on its side).

• The larger the time τ the better the assessment
should be (in terms of reliability). This would allow
the evaluation to be anytime.

• A constant rate random agent πrrand should have the
same expected valued for every τ and rate r.

• The evaluation must be fair, avoiding opportunistic
agents, which start with low performance to show an
impressive improvement later on, or that stop acting
when they get good results (by chance or not).

The main contribution of this work is that we revisit the
classical reward aggregation (payoff) functions which
are commonly used in reinforcement learning and re-
lated areas for our setting (continuous time on the
agent, discrete on the environment), we analyse the
problems of each of them and we propose a new modi-
fication of the average reward to get a consistent mea-
surement for this case, where the agent not only decides
an action to perform but also decides the time the de-
cision is going to take.

Setting Definition and Notation
An environment is a world where an agent can interact
through actions, rewards and observations. The set of
interactions between the agent and the environment is a
decision process. Decision processes can be considered
discrete or continuous, and stochastic or deterministic.

In our case, the sequence of events is exactly the same
as discrete-time decision process. Actions are limited by
a finite set of symbols A, (e.g. {left, right, up, down}),
rewards are taken from any subset R of rational num-
bers, and observations are also limited by a finite set
O of possibilities. We will use ai, ri and oi to (respec-
tively) denote action, reward and observation at inter-
action or cycle (or, more loosely, state) i, with i being a
positive natural number. The order of events is always:
reward, observation and action. A sequence of k inter-
actions is then a string such as r1o1a1r2o2a2 . . . rkokak.
We call these sequence histories, and we will use the
notation r̃oa≤k, r̃oa

′
≤k, . . ., to refer to any of these se-

quences of k interactions and r̃o≤k, r̃o′≤k, . . ., to refer
to any of these sequences just before the action, i.e.
r1o1a1r2o2a2 . . . rkok. Physical time is measured in sec-
onds. We denote by ti the total physical time elapsed
until ai is performed by the agent.

Both the agent and the environment are defined as
a probabilistic measure. In this way, an environment µ
is a probabilistic measure which assigns probabilities to
each possible pair of observation and reward. For in-
stance, µ(rkok|r̃oa≤k−1) denotes the probability in en-
vironment µ of outputting rkok after the sequence of
events r̃oa≤k−1. For the agent, though, this is now dif-
ferent to the typical reinforcement learning setting (and
more similar to control problems). Given an agent, de-
noted by π, the term π(d, ak|r̃o≤k) denotes the proba-
bility of π to execute action ak before a time delay d
after the sequence of events or history r̃o≤k. Note that
the probability on d is cumulative. Agents can stop,
i.e., there might be some event sequence r̃o≤k such that
p(d, ak|r̃o≤k) = 0 for all d and ak. Agents, in general,
can use information from its previous rewards and ob-
servations to determine its future actions and times, i.e.
ti+1 − ti can depend on the previous experience.

Interactions between environments and agents can be
interrupted at any time τ , known as the “overall or total
test time”. The value τ is unknown for any agent at any
moment. With nπτµ (or just nτ) we denote the number
of interactions or cycles performed by π in µ in time τ .
Let us see a very simple environment and agent:

Example Consider a test setting where a robot
(the agent) can press one of three possible but-
tons (A = {B1, B2, B3}), rewards are just a vari-
able score (R = [0 . . . 1]) and the observation is two
cells where a ball must be inside one of them (O =
{C1, C2}). Given the sequence of events so far is
r1o1a1r2o2a2 . . . rk−1ok−1ak−1, we define the environ-
ment behaviour as follows:

• If (ak−1 = B1 and ok−1 = C1) or (ak−1 = B2 and
ok−1 = C2) then we generate a raw reward of +0.1.

• Otherwise the raw reward is 0.

The observation ok in both cases above is generated
with the following simple rule: if k is even then ok = C2.
Otherwise, ok = C1. The first reward (r1) is 0.

From the previous example, a robot π1 al-
ways pressing button B1 at a rate of three times
per second would have the following interaction:
0C1B10.1C2B10C1B10.1 . . . with times ti = 1

3 i. A
second robot πrand presses buttons at random among
{B1, B2, B3} at a rate ti = 1

10 i.

Payoff and Environment Classes

Let us give the simplest notion of payoff:

Definition The total reward sum of agent π in envi-
ronment µ in a fixed time τ is defined as follows1:

V πµ ⇑ τ := E

(
nτ∑
i=1

ri

)
1E(·) denotes the expected value, which is only neces-

sary in the definition when either (or both) the agent or the
environment are non-deterministic.

For the previous example, the total reward for π1 in 30
seconds would be 1

2 × 30 × 3 × 0.1 + 1
2 × 30 × 3 × 0 =

4.5. The total reward for πrand in 30 seconds would be
1
3 × 30× 10× 0.1 + 2

3 × 30× 10× 0 = 10.
One of the problems of a cumulative reward function

is that the greater the time τ the greater the expected
value. More precisely, this is always the case only when
rewards are positive. Consequently, the previous mea-
sure cannot be used as a value in an anytime test where
the larger the time τ the better the assessment.

One attempt to solve this problem without abandon-
ing the idea of summing rewards is the notion of reward-
bounded (or summable) environment (LH07).

Definition An environment µ is reward-bounded if ∀i :
0 ≤ ri ≤ 1 and for every agent π:

limτ→∞V
π
µ ⇑ τ =

∞∑
i=1

ri ≤ 1

The idea is motivated by the issue that payoff func-
tions based on weighted or discounted rewards usually
require the arbitrary choice of a discounting function
and a parameter. However, the previous idea has sev-
eral problems. First, it is clear that it is easy to make
any environment reward-bounded, by just dividing raw
rewards by expressions such as 2i or any other kind
of discounting function whose total sum is lower than 1
(see (Hut06) for an extensive list of possible discounting
functions). But this implies that the discount function
is hardwired in the environment. We can make this
depend on a universal distribution over the universal
machine which generates the environments, but in the
end this is basically the same as not setting the reward-
bounded condition and choose the discount function ex-
ternally with a universal distribution over a universal
machine generating discount functions.

In any case, be it internally hardwired in the envi-
ronment or chosen externally there is another problem
with discount functions. For the overwhelming major-
ity of reward-bounded environments, the first actions
are typically astronomically more important than the
rest. This can be softened with discount functions that
approach a uniform distribution or that depend on the
agent’s age, but in the end, as the number of inter-
actions grow, the first actions (dozens or millions) get
most of the distribution and hence most of the total re-
ward. And, typically the first actions take place when
the agent explores the environment. This is related to
a similar problem for discounted rewards2.

There is still another (more serious) problem. With
reward-bounded environments, random agents typically
increase their return as τ grows (this also happens for
non-random agents, but this is somehow expected).
This is against the natural constraint that a constant-
rate random agent πrrand should have the same expected

2In fact, in order to show the equivalence in the limit
of the average reward and the discounted reward, (Hut06)
infinite many cycles have to be removed from the start.

valued for every τ and this value should also be the same
for every rate r.

And, finally, consider the previous aggregated func-
tion applied to biological systems (e.g. a child or a
chimpanzee). Since all the rewards are always positive,
the subject will strive to accumulate as much reward as
possible, generally acting fast but rashly (hyperactive).

As an alternative to discounting and also to reward-
bounded environments, and especially conceived to
work well with any agent, in (HOD09) we propose this:

Definition An environment µ is balanced if ∀i : −1 ≤
ri ≤ 1 and for a constant-rate random agent πrrand at
any rate r then

∀τ > 0 : E
(
V
πrrand
µ ⇑ τ

)
= E

br×τc∑
i=1

ri

 = 0

The construction of balanced environments is not dif-
ficult, even universal ones, as shown in (HO09a). It
is clear to see that changing rewards from the inter-
val [0, 1] to the interval [−1, 1] creates a phenomenon
which is frequently ignored in reinforcement learning
but is omnipresent in economics: “everything that has
been earned in previous cycles can be lost afterwards”.

As mentioned in the introduction, the goal was to
measure the performance of an agent in an environ-
ment in a given time τ . Apart from the unweighted
sum, there are many different ways to compute the
payoff (or aggregated reward, or return value) of a set
of interactions against an environment. In reinforce-
ment learning there are two main approaches for do-
ing that: the cumulative reward (with weights, typ-
ically known as discounting) and the average reward
(Mah96)(Ber95)(KLM96)(SB98).

Let us see some of them adapted to our continuous
time limit setting. For instance, reward can be averaged
in two different ways, by the number of cycles of the
agent (average reward per cycle), or by the physical
elapsed time (average reward per second). Since the
second boils down to 1

τ V
π
µ ⇑ τ (so inheriting most of

the problems of V πµ ⇑ τ), we will just analyse the first.

Definition The average reward per cycle of agent π in
environment µ in a fixed time τ is defined as follows:

vπµ ||τ := E

(
1

nτ

nτ∑
i=1

ri

)
If nτ = 0, then vπµ ||τ is defined to be 0.

Let us also revisit the most popular aggregated measure
in reinforcement learning, known as discounted reward,
which is just a weighted sum. We will see a gener-
alised version of discounted reward, following (Hut06).
Accordingly, we define γ = (γ1, γ2, . . .) with γk be-
ing positive real numbers (typically with γi > γi+1),
as a summable discount sequence in the sense that
Γnk :=

∑n
i=k γi <∞. If k = 1 we simply use Γn.

Hence, the discounted reward (per cycle) is:

Definition The discounted reward of agent π in envi-
ronment µ in a fixed time τ is defined as follows:

V πµ |γ|τ := E

(
1

Γnτ

nτ∑
i=1

γiri

)
A typical choice for γ is the geometric discounting
(γk = λk, 0 ≤ λ < 1). For a more exhaustive list
see (Hut06). As the very name says, all of them are
discounting, so the first rewards contribute to the ag-
gregated value much stronger than the rest. How much?
That depends on the choice of γ. In any case, the re-
sult very dependent on the rate. For instance, agents
increase their values with increasing values of τ if the
environment is not balanced. And even a slightly bet-
ter than random agent can have better results (although
not very good) than a slower but competent agent. An
alternative is to define γ as a function of ti, but in gen-
eral this has the same behaviour but additionally this
creates other problems (stopping policy problems, as
we will see in the following section).

The Problem of Time Modulation
The time taken by each agent to perform each action is
not necessarily constant. It might depend on the cost
of the computation. But, more importantly, it can be
intentionally modulated by the agent. Thus, agents not
only choose an action but they also choose the time they
want to devote to an action. This is natural in biological
systems but it is also an issue in control. More generally,
an agent could decide to stop, which implies stopping
any further exploration but also any further reward.

First, we see the notion of “time modulation policy”:

Definition A reasonable time modulation policy for
agent π in environment µ evaluated in a fixed time τ is
any intentional (or not) assignment for values t1, t2, . . .
where ∀i ti > ti−1, such that every ti can depend on
previous t1, t2, . . . , ti−1 and also on previous rewards
and observations, but never on τ (since τ is not known).

A time modulation policy can make the agent stop on ti
(and, hence ti+1 is infinite). In our setting, a tricky (but
good) policy here would be to act as a fast random agent
until having an average reward over a threshold and
then stop acting. We call this agent an opportunistic
fast random agent. If the threshold is 0 this strategy
ensures a positive reward in balanced environments3.
Consequently, an agent could get a very good result by
having very fast (and possibly lucky) first interactions
and then rest on its laurels, because the average so far
was good. The following theorem formalises this:

Theorem 1 4 There are random agents πrand using
stopping policies not knowing τ such that for some
balanced environment µ, there is a value t such that
∀τ ≥ t : vπrandµ ||τ > 0.

3In fact, if only rewards −1 and 1 are possible, the ex-
pected reward is 0.79 × 2 − 1 = 0.58 (see (Fer04)).

4Due to space limitations, proofs are found in (HO09b).

A first (and näıve) idea to avoid stopping policies would
be to give less weight to quick actions and more weight
to slow actions. Apart from being counterintuitive, this
would also be tricky, because an agent which is sure of
a good action will delay the action as much as possible,
which is, again, counterintuitive. On the other hand,
giving more weight to quick decisions is more intuitive,
but very fast mediocre agents can score well, and, ad-
ditionally, it also suffers the problems of opportunistic
time modulation. A better possibility is shown next:

Definition The average reward per cycle with dimin-
ishing history of agent π in environment µ in a fixed
time τ is defined as follows:

v̆πµ ||τ := E

(
1

n∗

n∗∑
i=1

ri

)
where n∗ =

⌊
nτ

(
tnτ
τ

)⌋
This definition reduces the number of evaluated cycles
proportionally to the elapsed time from the last action
until τ . If the last actions have been good and we de-
lay future actions and let time pass, we soon make the
measure ignore these recent good rewards. If we stop,
in the limit, the measure reaches 0, so it also avoids
stopping policies, as the following theorem shows.

Theorem 2 For every balanced environment µ and ev-
ery agent π, there is no stopping policy not know-
ing τ which eventually stops such that πrand has
limτ→∞v̆

πrand
µ ||τ > 0.

And now, we can ensure what happens in any case
(stopping or not) for a constant-rate random agent:

Theorem 3 For every balanced environment µ, a
constant-rate random agent πrand with any stopping
policy has limτ→∞v̆

πrand
µ ||τ = 0.

A more difficult question is whether time modulation
policies are completely avoided by the previous defini-
tion. The answer is no, as we see next.

Lemma 4 We denote Rπrandµ (i) the result of any given
payoff function R until action i. For every R, an agent
π after action ai with a locally optimal time modulation
policy should wait a time td for the next action if and
only if ∀ti ≤ t < ti+ td : Rπrandµ (i) > E(Rπrandµ (i+1)).

In other words, the payoff until ti + td not performing
any action is greater than the expected payoff perform-
ing the following action. The previous lemma does not
say whether the agent can know the expected payoff. In
fact, even in cases where the overall expected payoff is
clear, an agent can use a wrong information and make
a bad policy. Note that lemma 4 is shown with the
true expected value, and not the expected or estimated
value by the agent. With this, we can conclude that al-
though random agents can use time modulation policies
and can work well in some environments, they can also
be bad in other environments. As a result, good agents
can also be discriminated from bad agents because they
have (or not) good modulation policies. The following
theorem shows that good time modulation policies are
not easy to find, in general.

Theorem 5 Given any agent π there is no time mod-
ulation policy which is optimal for every balanced envi-
ronment µ.

So we have realised that time modulations are impossi-
ble to avoid (only minimise). As a result, we will have to
accept time modulation as part of the agent behaviour
and needs to be considered in the measurement.

Comparison of Payoff Functions
After the analysis of several payoff functions adapted
from the literature, and the introduction of a new vari-
ant with some associated results, it is necessary to re-
capitulate and give a comprehensive view. The setting
we introduce in this paper is characterised by different
response times on the side of the agent. These different
response times could be motivated by different agent
speeds or by an intentional use of delays.

Other practical issues for each function are related to
the behaviour against random agents, the convergence
or boundedness of the results, whether there is a pref-
erence for the start of the testing period, etc. In what
follows, we will examine the previous payoff functions
according to several features, as shown in table 1.

There are several measures which cluster together.
For instance V πµ ⇑ τ and ωπµ |τ get almost the same an-
swers, since one is the scaling of the other using τ . And
V πµ ⇑ τ also gets very similar results to V πµ |γ|τ , since
all of them are cumulative. Averages, on the contrary,
have a different pattern. In general, it is also remarkable
that the use of balanced environments typically is more
problematic on issues 10 and 11, while being better on
1 and 2. The measure v̆ in balanced environments gets
11 ‘yes’ from a total of 12.

Feature 9 has to be discussed in more detail. It
refers to cases where necessarily (not because of the
agent’s time modulation policy) the response times in-
crease with time. This is a general issue in many prob-
lems, since, as time increases, more history has to be
taken into account and decisions can be more difficult to
make. Consider for instance a problem such that choos-
ing the right decision at interaction i has an increasing
polynomial time complexity. Consequently, many of
the payoff functions will penalise the agent executing
this algorithm for increasing values of τ or nτ . On the
contrary, vπµ ||τ would not penalise this at all (but al-
lows the stopping problem) and v̆πµ ||τ penalises it very
mildly. For problems with exponential complexity (and
many other NP-problems), though, v̆πµ ||τ typically will
make n∗ go to zero between interactions (ti+1 > 2ti).
This means that other algorithms approximating the
problem in polynomial time could get better rewards.

Conclusions
This paper has addressed a problem which is appar-
ently trivial: to evaluate the performance of an agent
in a finite period of time, considering that agent actions
can take a variable time delay (intentionally or not).
However, the evaluation is more cumbersome than it

Environment Type General Bounded Balanced General Balanced General Balanced Balanced

Score Function V πµ ⇑ τ V πµ ⇑ τ V πµ ⇑ τ vπµ ||τ vπµ ||τ V πµ |γ|τ V πµ |γ|τ v̆πµ ||τ

1. Do random agents get a somehow central value (preferrably 0)? No No Yes No Yes No Yes Yes
2. Is the result of random agents independent from τ and the rate? No No Yes No Yes No Yes Yes
3. Is it avoided that a fast mediocre agent can score well? No No No Yes Yes No No Yes
4. Does the measurement work well when rates → ∞? No No No Yes Yes No No Yes
5. Do better but slower agents score better than worse but faster agents? No No No Yes Yes * * Yes
6. Do faster agents score better than slow ones with equal performance? Yes Yes Yes Yes Yes Yes Yes Yes
7. Are the first interactions as relevant as the rest? Yes No Yes Yes Yes No No Yes
8. Is the measure bounded for all τ? No Yes No Yes Yes Yes Yes Yes
9 .Does it work well when actions require more and more time to decide? No No No Yes Yes No No Yes
10.Is it robust against time stopping policies? Yes Yes No No No Yes No Yes
11.Is it robust against time modulation policies? Yes Yes No No No Yes No No
12.Is it scale independent (different time units)? Yes Yes Yes Yes Yes Yes Yes Yes

Table 1: Comparison of Payoff Functions. Symbol ‘*’ denotes that it may depend on a parameter (e.g. γ).

might seem at first sight. First of all, it is closely re-
lated but not the same as the measurement in reinforce-
ment learning, which typically disregards agent reac-
tion times. Additionally, payoff functions are conceived
to be embedded in the design of the algorithms that
control agent behaviour, not to be used in a general
test setting. And it is important to mention this again,
since here we are not (mainly) concerned with the de-
sign of agents but in their evaluation. Consequently,
we know that, as Hutter says (Hut06): “eternal agents
are lazy”, and might procrastinate their actions. This
is what typically happens with averages, since with an
infinite number of cycles (i.e. eternal life) we will al-
ways be able to compensate any initial bad behaviour.
We do not want to avoid this. We want that, if this
happens, the measure takes it into account. When the
lifetime τ is not known or is infinite, a typical possibility
is to use a weighting (i.e. discounting). This generally
translates into an evaluation weighting where the first
actions are more important than the rest, which is not
reasonable. This does not mean that the formula of
discounted reward should not be used in agent design.
On the contrary, discounted reward and the techniques
that derive from them (such as Q-learning) could work
well in our setting, but we should not use them as the
external performance measure. In any case, we must
devise tests that work with artificial agents but also
with biological beings. This is one of the reasons that
negative rewards are needed. Paraphrasing Hutter, we
can say that “using cumulative positive rewards make
agents hyperactive”.

Our main concern, however, has been an opportunis-
tic use of time. This problem does not exist when using
discrete-time agents and it is uncommon in evaluation,
especially outside control and robotics, where the goals
and measurements are different. The adjustment pro-
posal on the average tries to solve the stopping problem.

The main application of our proposal is for measuring
performance in a broad range of environments which,
according to (LH07), boils down to measuring intelli-
gence. The setting which is presented here is neces-
sary for an anytime intelligence test (HOD09), where
the evaluation can be stopped anytime, and the results
should be better the more time we have for the test.

Finally, as future work, the use of continuous-time en-

vironments must be investigated, especially when other
agents can play inside the environment. This is typical
in multi-agent systems. The problem here is to deter-
mine the rate of the system, because it can be too fast
for some agents and too slow for others.

Acknowledgments
The author thanks the funding from the Spanish Ministerio
de Educación y Ciencia (MEC) for projects Explora-Ingenio
TIN2009-06078-E, Consolider 26706 and TIN 2007-68093-
C02, and Prometeo/2008/051 from GVA.

References
D.P. Bertsekas. Dynamic Programming and Optimal
Control. Athena Scientific, Belmont, MA, 1995.

T. S. Ferguson. Optimal Stopping and Applica-
tions. Maths. Department, UCLA, 2004. http://
www.math.ucla.edu/∼tom/Stopping/Contents.html.

J. Hernández-Orallo. A (hopefully) unbiased universal
environment class for measuring intelligence of biolog-
ical and artificial systems. Extended Version. available
at http://users.dsic.upv.es/proy/anynt/, 2009.

J. Hernández-Orallo. On evaluating agent perfor-
mance in a fixed period of time. Extd. Version. avail-
able at http://users.dsic.upv.es/proy/anynt/, 2009.

J. Hernández-Orallo and D. L. Dowe. Mea-
suring universal intelligence: Towards an any-
time intelligence test. Under Review, available at
http://users.dsic.upv.es/proy/anynt/, 2009.

M. Hutter. General discounting versus average re-
ward. In ALT, volume 4264 of LNCS, pages 244–258.
Springer, 2006.

L.P. Kaelbling, M.L. Littman, and A.W. Moore. Re-
inforcement learning: A survey. J. Artif. Intel.,
4(1):237–285, 1996.

S. Legg and M. Hutter. Universal intelligence: A
definition of machine intelligence. Minds & Mach.,
17(4):391–444, 2007.

S. Mahadevan. Average reward reinforcement learn-
ing: Foundations, algorithms, empirical results. Mach.
Learn., 22, 1996.

R. S. Sutton and A. G. Barto. Reinforcement Learn-
ing: An Introduction. The MIT Press, March 1998.

