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Abstract

This paper proposes a continuous-time machine learning
model that learns the chronological relationships and the in-
tervals between events, stores and organises the learnt knowl-
edge in different levels of abstraction in a network, and makes
predictions about future events. The acquired knowledge is
represented in a categorisation-like manner, in which events
are categorised into categories of different levels. This inher-
ently facilitates the categorisation of static items and leads to
a general approach to both spatial and temporal perception.
The paper presents the approach and a demonstration show-
ing how it works.

Introduction
The general goal of artificial intelligence requires the intelli-
gent agent to learn and acquire the knowledge not only from
the data set that represents a static environment, but also
from a dynamic world in which some events may always
happen after others and the intervals between them may fol-
low some patterns. Tackling both the spatial and the tempo-
ral aspects of the problem has attracted the interest of other
researchers as well (Sur09).

Intelligence arises first from getting to know the similari-
ties and differences between different items. This has been
well studied by psychologists in the area of categorisation
and concept formation. However, in the very wide range
of models presented in the literature of this area (Ros78)
(Ham95) (Nos86) (Kru92), the items are presented as a set of
features in a static way, in which each presentation is a sin-
gle discrete event, independent of and unrelated to all other
events.

The shortcomings of this static view of concept formation
lie in two aspects. Firstly, it lacks the ability to deal with
irregular dynamic events that last a period of time, which, we
think, can also be handled in a similar way to the static items.
And secondly, human beings and animals actually always
perceive an environment that continuously changes. What is
missing in the static view is how the dynamic perception can
be transformed into the static items.

An experiment described in (Car02) showed that the vi-
sion of our eyes is actually very small. What is usually
thought to be observed at once by the eyes is actually per-
ceived piece by piece and step by step. To our nervous sys-
tem, even the perception of a static world is a multi-step ob-

servation process that spans over a period of time, which
needs to be converted to or treated as an integrated item
somehow to facilitate the intelligence of a higher level.

On the other hand, the learning of time-spanning events
has been studied independently of concept formation. In
Pavlov’s studies (Pav28), dogs were trained or conditioned
by being presented with a conditioning stimulus (e.g. the
ringing of a bell) that was followed, after a certain con-
trolled interval, by an unconditioned stimulus (e.g. the pre-
sentation of food). The critical observation in these studies
was that the timing of a trained dog’s conditioned response
(e.g. salivation) depended on the interval between the con-
ditioned and unconditioned stimuli (between the ringing of
the bell and the presentation of food). The longer the inter-
val between the bell and the presentation of food, the longer
the interval between the bell and the start of salivation: the
shorter the interval between the bell and food, the shorter
the interval between the bell and salivation. Skinner (Ski38)
similarly found that the timing of operant response in trained
pigeons was also dictated by the intervals between reinforce-
ment.

However, unlike the studies of categorisation, all these
studies focused only on one or two specific events and the
corresponding intervals, rather than the relationships be-
tween various events and the acquisition of knowledge. This
paper presents a machine learning approach based on the ar-
gument that time-spanning events can be considered in the
same way as the concepts that are learnt and categorised in
the traditional categorisation perspective.

Figure 1: Demonstration of our Machine Learning Ap-
proach at http://csserver.ucd.ie/˜jlongnan/
agi.html. We invite readers to play with this demo be-
fore reading on.



An agent-environment perception is taken. And the model
is designed to serve the purpose of making predictions of
what will happen in the environment.

The remainder of the paper is organised as follows. First,
we present an overview of the model. Then, we go through
different aspects of the model in detail. Finally, we present a
demonstration as illustrated in Figure 1 that shows how the
model works.

Overview
Basically, the model is based on a network of knowledge.
Each node of the network is a rule in the form of

If something happens, then something (else) will hap-
pen, in some time.

which includes three elements: an antecedent, a conse-
quence, and an interval. Note that the antecedent and the
consequence can be the same thing.

Such a node can also be considered as an individual event
in which

First something happens, and then after some time,
something (else) happens.

And this event, represented by an individual node in the net-
work, can take the role of the antecedent or the consequence
of some other rules, i.e. nodes.

In this way, nodes are connected with each other. And al-
though a node consists of only one antecedent and one con-
sequence, it can represent a long series if it is on a higher
level and thus contains a lot of other lower level nodes in-
directly. Ultimately, every node refers to a set of sensory
inputs. Despite that we can create as many nodes as needed,
we do have a fixed set of sensory inputs for any given agent
in this model. These sensory inputs are supposed to receive
pulse-like stimuli to perceive the changes of the environ-
ment. And the nodes not only define sets of sensory inputs,
but also define the patterns and rhythms in which they get
stimulated. Figure 2 shows an example. Note that the inter-
val between the antecedent and the consequence is defined
to be the interval between the first stimulus of the antecedent
and the first stimulus of the consequence.

Unlike the Temporal Causal Networks described by
Bouzid and Ligeza (BL00), the causality of not only the in-
dividual inputs but also specific sequences of inputs is rep-
resented in this network.

This knowledge representation is designed to allow the
predictions of what will happen in the environment to be
made in a distributed manner. Each node, having observed
that its antecedent has happened or is happening, makes a
prediction that its consequence will happen.

Both the concrete experiences and the abstractions are
represented by and handled through the network nodes in
exactly the same way. For a particular series of perceived
stimuli, in addition to the node representing the whole event,
different nodes covering different aspects of the event are
also created. The latter is considered the abstraction.

Less abstract nodes refer to more abstract ones. For ex-
ample, in Figure 2, A refers to B and D. A represents that if
S1, S2 and S3 get stimulated in this particular pattern then

Figure 2: An Example of the Network: (a)Four nodes,
A, B, C, and D, denoted by the circles are formed based on
four sensory inputs, S1, S2, S3, and S4, which are denoted
by the dots. The intervals are written in the brackets be-
low the nodes. Arrows are used to point the antecedent of a
node to the node and also the node to its consequence. The
antecedent and consequence of a node are always drawn be-
low it. (b)The series represented by node A happens first
with S1 getting stimulated. Assuming that it is at time 0, S2
then gets stimulated at time 2s. S3 gets stimulated twice at
time 3s and 5s respectively. And finally S4 gets stimulated
at time 6s. As mentioned previously, the interval between B
and D is defined to be the interval between the time when S1
gets stimulated and the time when S3 gets stimulated for the
second time as the antecedent of D.

S3 and S4 will get stimulated in another pattern. It is con-
sidered less abstract than B and D because it contains more
details. A part of A, e.g. B, may be the useful part while the
rest may be just the trivial details. In this case, A can be con-
sidered as an instance of category B. A node can be referred
to by multiple other nodes. This leads to a semi-hierarchical
network, in which the knowledge represented by the nodes
may arbitrarily overlap with one another and no strict tree
structure is constructed. The nodes can be viewed not only
as different events, but also as the categories they fall into.
A more abstract node can be considered as the category of
all the less abstract nodes that refer to it. And in this way,
the network can be considered both as a collection of events
and as the categorisation of these events.

This model deals with categorisation from a perspective
of perception. The perception is categorised based on the
similarity between different experiences.1 For example, my
car as observed this morning and my car as observed this
evening are considered as two different instances or items.
Both of them are represented by a node and they may both
refer to a more abstract one representing my car. In other
words, they are categorised as my car. Meanwhile, my car

1Although we do believe the things that are categorised together
by human beings must, from a perspective of perception, share
something in common, e.g., hearing other people call those things
the same name, this paper does not discuss whether this principle
is appropriate or not. The proposed prediction-oriented model in-
herently deals with categorisation this way.



may refer to and thus be categorised into a more abstract
node, car. Unlike the traditional categorisation models such
as (Ros78) and (Kru92), this model does not differentiate
between the items and the categories they fall into. In the
above example, my car is not only an item but also a cate-
gory.

The generalisation happens when some nodes are consid-
ered more reliable than others. The nodes that are more
likely to make the right predictions and more reliable in re-
flecting what really is going on in the environment dominate
the others.

The following sections focus on the three major aspects of
the model, which are learning, recognition, and prediction
respectively.

Learning
Event
Unlike most conventional machine learning models, the sen-
sory system of this model is designed to receive pulse-like
stimuli input instead of maintain a set of state variables that
can be retrieved freely. The intelligent agent possesses an
array of sensory inputs. An event is simply one or more sen-
sory inputs getting stimulated in some pattern, in which an
individual sensory input may be stimulated more than once.

For the sake of discussion, an event is considered to be
a sub-event of another if all its stimuli are also presented
in the other, and the intervals between them are the same.
Equivalently, the latter is called a super-event of the former.

There are two types of sub-events. A segment sub-event
is a continuous fragment of its super-event. It contains every
stimulus in this fragment. While a non-segment sub-event is
a concatenation of more than one continuous segments, with
missing stimuli from its super-event in between. Figure 3
illustrates this.

Figure 3: Segment Sub-events and Non-segment Sub-
events: (a)The event denoted by node A in Figure 2, in
which the sensory inputs S1, S2, S3 and S4 get stimulated
in a specific tempo. (b)A segment sub-event of it. (c)A
non-segment sub-event of it.

Memory
As described previously, network nodes are formed to de-
note the memories of the perceived events in the form of
antecedent-consequence pairs with intervals, for future use.

Simple nodes, which usually form in the early stage of
a simulation, have sensory inputs as both their antecedents
and consequences. They represent simple events that consist
of only two stimuli to the sensory inputs. Meanwhile, nodes
that represent long and complicated events can be formed
based on existing nodes.

Concrete Experience
When an event is perceived, i.e. some sensory inputs are
stimulated in some pattern, the event itself and all its sub-
events will be stored, assuming none of them has ever been
perceived before.

Take the event shown in Figure 4(a) for example. First,
as shown in Figure 4(b), a node for the first two stimuli
is formed based directly on the sensory inputs (Node A1).
Next, a node for the first three stimuli is formed based on
the first node and the third sensory input (Node A2). The
rest of the event stimuli is all included this way. And finally
the node for the whole event is formed (Node A).

Figure 4: Nodes Formed for Segment Sub-events

But that’s not all. Only the nodes for the segment sub-
events that start with the first stimulus have been formed. In
addition to that, the nodes for the segment sub-events start-
ing with the second stimulus of the event are formed in a
similar way as shown in Figure 4(c). And the nodes for
the segment sub-events starting with each of the rest of the
stimuli are all formed this way.

As a result, a node is formed for every possible fragment
of the event, which may start from anywhere in the event
and end anywhere after the starting point.

Abstraction
Abstraction, in this continuous-time event-based model, is
viewed as the formation of sub-events that are shared by
multiple events.

Sub-events that may possibly be contained by the events
perceived in the future form nodes so that they can be re-
ferred to later. This actually has been partially demon-
strated in the example shown in Figure 4, in which the nodes



for only one type of the sub-events of the perceived event,
namely the segment ones, are formed.

Actually, the nodes for all the non-segment sub-events
are also formed similarly. For example, the second and the
fourth stimulus of an event will form a node with the interval
between them, based on which another node for the second,
the fourth, and the fifth stimulus will also be formed.

Any sub-event of a perceived event is considered to be
a possible pattern that the event may be following. When
a number of events indeed follow a particular pattern, they
share that sub-event by referring to the node representing it
either directly as the antecedent or the consequence of them,
or indirectly. Meanwhile, the node for the pattern itself,
is probably sharing some more general patterns with other
nodes. And a network of events of different levels of detail,
that is, different levels of abstraction, is formed this way.

The generalisation of the model works in a way in which,
in the beginning of the learning, the perceived item is anal-
ysed and all various aspects of it are represented individu-
ally. These aspects, which overlap with each other, actually
include all possible more general and more abstract items,
i.e. categories. For example, when a particular car as ob-
served this morning is perceived, various aspects of it such
as a particular car, car, vehicle, wheel, a particular wheel
and a lot of things we do not have names for are also rep-
resented and stored at the same time. As more and more
items are perceived by the agent, some aspects of the percep-
tion, e.g. car, are found to be more useful than others, e.g.
a particular wheel, because they are shared by more items
and thus are more reliable in making the predictions. These
aspects gain more credit and have stronger influence. And
they can be considered as the basic level categories defined
by Rosch (Ros78).

Short-term Memory
The nodes that are formed for a single event are discussed
in the previous sections. However, the intelligent agent is
supposed to receive a continuous series of stimuli, without
separators.

One option is to take all the stimuli from the start till
present as a big event. But that will cost too much space
and time. In the model, when a sensory input is stimulated,
only a limited number of previous stimuli will be linked to
it to form new nodes. The stimuli that occur too early are
simply ignored, as if they have never occurred. The number
of nodes that are formed is limited this way. Those stimuli
that are used to form new nodes are considered to be in a
short-term memory.

A limited size of short-term memory may seem to com-
pletely prevent long series from being learnt. But actually it
does not. This is discussed in the next section.

Recognition
Recurring Event
When an event that has been previously perceived occurs,
no new node is formed. Rather, the event is recognised by
an existing node. This recognition process takes place when

1. The antecedent and consequence of an existing node is
perceived and both of them are still being held in the
short-term memory; and

2. The difference between the perceived interval and that of
the existing node is within a tolerance range.

When either of the above two conditions is not met, even
if the other one is, no recognition takes place and instead a
new node is formed.

Familiarity
The capacity of the short-term memory is designed in rela-
tion to the number of nodes instead of the number of stim-
uli of the events being held.2 When the recognition pro-
cess happens, the existing node will take the place of its an-
tecedent and consequence in the short-term memory. This
makes more space in the short-term memory so that more
information can be held in it. Note that just like more than
one stimulus of a single sensory input can be held in the
short-term memory, a single node can be recognised more
than once in a short period of time and thus has more than
one instance being held in the short-term memory.

Recognition can happen recursively. The nodes that refer
to other nodes can be recognised after their antecedents and
consequences are recognised.

The learning process can also take place upon the recog-
nition. New nodes can be formed based on the recognised
ones or combinations of the recognised nodes and raw stim-
uli.

Therefore, no matter how long a series is, it can still be
learnt piece by piece, as long as it recurs enough times.

Overlapping Events
Assuming two events that have already been learnt indepen-
dently recur in an overlapping manner, in which, one event
starts before the other finishes. Both events will be recog-
nised. And a new node will be formed with one of them as
the antecedent and the other as the consequence. The inter-
val, by definition, is the delay between their first stimuli.

Such nodes, with their antecedents overlapping with their
consequences, are dealt with in the same way as other nodes.
They are also used to make the predictions, as discussed in
detail in the next section.

Prediction
Knowledge and its Use
A node is not only an event. It is also a piece of knowledge.
It is a fraction of the understanding of what the environment
is like. It is a prediction that if its antecedent happens, its
consequence happens after the interval.

The possession of a collection of nodes is the possession
of the knowledge of some aspects of the environment. To
make use of the knowledge, an intelligent agent makes pre-
dictions.

2In the current model, the short-term memory is represented by
a fixed number of spaces, each of which can store either a stimulus
or a recognised node.



The sole purpose of this knowledge structure is to allow
the model to make predictions of what will happen based on
what has already happened. Whenever the antecedent of a
node is perceived, it makes a prediction that its consequence
will happen after the interval. A large number of predic-
tions may be made simultaneously by multiple nodes from
all over the network. These predictions can then be used to
make decisions when the model is put into a decision mak-
ing process.

Confidence
The prediction is actually made in the form of the confi-
dence, which is an attribute of the node, ranging from 0
to 1. From one perspective, the confidence of a node can
be viewed as the degree of certainty held by the node that
its consequence is about to happen at the given time. From
another perspective, it can also be viewed as the degree of
certainty held by the node that the event represented by the
node itself is actually happening at the given time.

The confidence of a node is determined by various factors,
the most important of which is the time since its antecedent
last happened.

We define the expectation of a node, which ranges from 0
to 1. It usually stays at 0. When the antecedent of the node is
perceived and the exact interval has passed, it reaches 1. The
time when the expectation reaches 1 is called the expected
time. When the time is around the expected time and within
a tolerance range, the expectation gets a value between 0 and
1. The closer the time is to the expected time, the higher the
expectation is. Currently a cosine function is adopted. See
Figure 5 for illustration.

Figure 5: Expectation Changing over Time: Assuming the
antecedent of the node occurs at time 0 and the conse-
quence does not happen, the expectation of the node starts
to increase when the time is within the tolerance range and
reaches its maximum value of 1 at the expected time. After
that, it gradually decreases to 0.

If the consequence of the node does happen when its ex-
pectation is greater than 0, the prediction is considered to be
verified and the node stops making the prediction by chang-
ing its expectation to 0 immediately.3

3Note that the antecedent is assumed to have completely hap-
pened at this point. More complicated cases are discussed in sub-
sequent sections.

In the simplest case, the confidence of a node is simply its
expectation as in

c = e (1)

where c is the confidence of the node and e is the expec-
tation of it. Other factors that influence the confidence are
discussed in subsequent sections.

Reliability
The predictions made by different nodes are not treated the
same way.

A prediction made by a particular node at a specific time
may turn out to be either right or wrong. On the one hand,
some nodes may tend to always make right predictions. On
the other hand, some nodes may tend to always make wrong
predictions. The knowledge represented by the former better
reflect what the environment is like than the latter.

Each node has its reliability, which may range from 0 to 1.
The higher the reliability of a node is, the stronger influence
the node has on the overall perspective. And the reliability
of a node is actually defined as its degree of accuracy as
follows.

r =
p

a
(2)

where r is the reliability of the node, p denotes how many
times the event represented by the node has been perceived,
and a denotes how many times the event represented by its
antecedent has been perceived. This is because every time
the antecedent of the node is perceived, it makes a predic-
tion, but only when the node itself is perceived afterwards,
the prediction is considered to be accurate.4

The confidence of a node is always influenced by its reli-
ability. Having taken into account the reliability, r, we can
now define the confidence of a node, c, as

c = re (3)

Interaction
The predictions are made by the nodes that are intercon-
nected in the network. And they are not only determined by
the nodes that make them through the general principle of
prediction discussed previously, but also influenced by other
nodes directly or indirectly in a number of ways.

The confidence of a given node can be influenced by a
node that has a direct connection to it, which falls into one
of the four types listed below.

1. Antecedent A node has a unique antecedent. Its influ-
ence on the confidence of the node is already discussed in
the case where it is a sensory input. Actually, if the an-
tecedent itself is another node, the way it influences the
confidence of the node in question is similar, only that its
own confidence plays a role in it. To be more specific,
assuming the antecedent is the only source of the confi-
dence of the node, its confidence c, then, can actually be
represented as

c = ca = c′re (4)
4This definition of the reliability takes a perspective of the over-

all statistical accuracy. Alternatively, a definition that favours the
more recent experiences may be taken.



where c′ is the confidence of the antecedent of the node.
We use ca to denote the part of the confidence of the node
that is contributed by its antecedent.

2. Consequence A node has a unique consequence. When
both the antecedent and consequence of the node gains a
confidence value of 1 when its expectation e is still greater
than 0, as the event is considered over, e is set to 0 and
thus ca changes to 0 as well.

3. Antecedent parent Any node that has the given node
as its consequence is an antecedent parent of the given
node. A node may have zero or more antecedent par-
ent. Even if there is no evidence that the antecedent of the
node is happening, the node may gain confidence through
its antecedent parents. Actually, each antecedent parent
passes the ca part of its confidence to the node. In other
words, the confidence that the node gains from each of
its antecedent parent is simply the confidence that the an-
tecedent parent gains from its own antecedent.

4. Consequent parent Any node that has the given node as
its antecedent is a consequent parent of the given node.
Like the antecedent parent, a node may have zero or more
consequent parent. But unlike the antecedent parent, a
consequent parent of the node passes the non-ca part of
its confidence, that is, the consequence it gains from its
antecedent parents and consequent parents, to the node in
question.

To combine the confidence that a node gains from both
its antecedent and all the parent nodes, the confidence of the
node, c, is defined as

c = 1− (1− ca)
∏

i∈A∪C

(1− ci) (5)

where A is the set of all its antecedent parents, C is the set
of all its consequent parents, and ci is the confidence that the
node gains from the parent node i.5

A Demonstration of the Model
Currently we are still working on testing the model against
various experimental data. Whereas in this paper we show a
toy program that can demonstrate how the model learns on
a real-time basis.

As shown in Figure 1, a grid of sensory inputs represented
by squares is displayed by the program. Users are allowed to
stimulate these sensory inputs by clicking on them or press-
ing the keys. Multiple sensory inputs can be stimulated si-
multaneously by pressing multiple keys at the same time.

The program learns both the spatial and temporal patterns
of the stimuli and keeps making the predictions of which
sensory inputs are about to be stimulated. The sensory in-
puts stimulated by the user are shown in red. And the sen-
sory inputs predicted by the program are shown in blue.
The more confident the program is about a prediction, the

5The confidence is considered as the probability of some sort.
Various sources of the confidence are also simply considered to
be independent events. Conventional probability theory is used to
combine them together.

brighter the predicted sensory input will be displayed. The
network size indicates how much knowledge has been learnt.

The program can demonstrate that repeated spatial and
temporal patterns, even with random interference in either a
spatial or a temporal sense, will be learnt. Or from another
perspective, similarities between different processes will be
traced. The more consistently a pattern is followed, the more
confident the prediction about it will be. And longer and
more complicated sequences can be learnt after shorter and
simpler ones are learnt.

Conclusion
A continuous-time prediction-oriented machine learning
model based on a semi-hierarchical knowledge represen-
tation has been presented as an attempt to combine spa-
tial and temporal perception. It allows the intelligent agent
to acquire the knowledge in both static and dynamic en-
vironments; to recognise learnt spatial and temporal pat-
terns and build new knowledge upon them; and to make the
predictions in a distributed manner through the antecedent-
consequence representation of the knowledge. A demon-
stration program is also presented to show how the model
works.
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