Stochastic Grammar Based Incremental Machine Learning Using Scheme

Eray Ozkural and Cevdet Aykanat
Bilkent University
Ankara, Turkey

Introduction

Gigamachine is our initial implementation of an Artificial
General Intelligence (AGI system) in the O’Caml language
with the goal of building Solomonoff’s “Phase 1 machine”
that he proposed as the basis of a quite powerful incremental
machine learning system (Sol02). While a lot of work re-
mains to implement the full system, the present algorithms
and implementation demonstrate the issues in building a re-
alistic system. Thus, we report on our ongoing research to
share our experience in designing such a system. In this
extended abstract, we give an overview of our present im-
plementation, summarize our contributions, discuss the re-
sults obtained, the limitations of our system, our plans to
overcome those limitations, potential applications, and fu-
ture work.

The reader is referred to (Sch04;|Sol02;/Sol09) for a back-
ground on general-purpose incremental machine learning.
The precise technical details of our ongoing work may be
found in (Ozk09), which focuses on our algorithmic contri-
butions. The discussion here is not as technical but assumes
basic knowledge of universal problem solvers.

An overview of Gigamachine

Gigamachine is an incremental machine learning system that
works on current gigaflop/sec scale serial computers. It
is the testbed for our experiments with advanced general
purpose incremental machine learning. Here, we describe
version 1 of Gigamachine. Incremental machine learning
can act as the kernel of complete AGI systems such as
Solomonoff’s Q/A machine or the Godel Machine. The
present implementation solves operator induction over ex-
ample input/output pairs (any Scheme expression is an ex-
ample). Our work may be viewed as an alternative to OOPS
in that regard.

Design and implementation choices

Reference machine In Algorithmic Probability Theory,
we need to fix a universal computer as the reference ma-
chine. (Sol09)) argues that the choice of a reference machine
introduces a necessary bias to the learning system and look-
ing for the “ultimate machine” may be a red herring. In pre-
vious work, low-level universal computers such as FORTH
and Solomonoff’s AZ have been proposed. Solomonoff sug-
gests APL, LISP, FORTH, or assembly. We have chosen the

LISP-like language Scheme R5RS, because it is a high level
functional language that is quite expressive and flexible, di-
rectly applicable to real-world problems. We have taken all
of R5RS and its standard library with minor omissions.

Probability model of programs We use a stochastic
Context-Free Grammar (CFG) as the “guiding pdf” for our
system as suggested by Solomonoff (Sol09). Although
Solomonoff proposes some methods to make use of the solu-
tion corpus using stochastic CFG’s, we introduce complete
algorithms for both search and update.

Implementation language We have chosen O’Caml as
our implementation platform, as this modern programming
language makes it easier to write sophisticated programs yet
works efficiently. The present implementation was com-
pleted in about a month.

Implementation platform We have used an ordinary
desktop computer and serial processing to test our ideas,
we will use more advanced architectures as we increase the
complexity of our system.

Contributions

We have made several contributions to incremental machine
learning regarding both search and update algorithms. A
good part of our contributions stem from our choice of
Scheme as a reference computer. It would seem that choos-
ing Scheme also solves some problems with low-level lan-
guages. A drawback in systems like OOPS is that they do
not make good use of memory, better update algorithms may
eventually alleviate that drawback.

Search algorithms

For the search algorithm, we use Depth-First Search in the
space of derivations of the stochastic CFG. Thus, only syn-
tactically correct candidates are generated. We use left-
most derivation to derive programs from the start symbol.
We keep track of defined variables and definitions to avoid
generating unbound references and definitions by extending
CFG with procedural rules. We generate variable declara-
tions and integers according to the Zeta distribution which
has empirical support. We use a probability horizon to limit
the search depth. We also propose using best-first search and
a new memory-aware hybrid search method.



Update algorithms

We have designed four update algorithms that we will sum-
marize. The former two have been implemented and they
contain significant innovations on top of existing algorithms.
The latter two are completely novel algorithms. All of them
are well adapted to stochastic CFG’s and Scheme.

Modifying production probabilities We use derivations
of the programs in the solution corpus to update production
probabilities. Since each derivation consists of a sequence
of productions applied to nonterminals in sentential forms,
we can easily compute probabilities of productions in the
solution corpus. This is easy to do since the search already
yields the derivations. However, this would cause zero prob-
abilities for many productions if we used those probabilities
directly, thus we use exponential smoothing to avoid zero
probabilities.

Re-using previous solutions Modifying probabilities is
not enough as there is only so much information that it can
add to the stochastic CFG. We extend the stochastic CFG
with previously discovered solutions (Scheme definitions)
and generate candidates that use them. This is very natu-
ral in Scheme as the syntactic extension of a function is not
a function. In principle, this is synergistic with modifying
production probabilities as the probabilities of new produc-
tions can be updated, although in practice this depends on
implementation details.

Learning programming idioms We can learn more than
the solution itself by remembering syntactic abstractions that
lead to the solution. Syntactic abstraction removes some
levels of derivation to obtain abstract programs and then re-
members them using the algorithm of re-using previous so-
lutions.

Frequent sub-program mining Similar to code re-use,
we can find frequently occurring sub-programs in the so-
lution corpus as Scheme expressions and add them to the
grammar.

Training Sequence and Experiments

We have tested a simple training sequence that consists of
the identity, square, addition, test if zero, fourth power,
NAND, NOR, XOR, and factorial functions. Details can
be found in (Ozk09). Our experiments show beyond
doubt the validity of our update algorithms. The search
times decrease dramatically for similar subsequent problems
showing the effectiveness of modifying probabilities. The
fourth power function demonstrates code re-use in its solu-
tion of (define (pow4 x ) (define (sqr x ) (* x
x)) (sgr (sgr x ) )) which takes shorter than solving
the square problem itself. The factorial function took more
than a day, so we interrupted it. It would be eventually found
like other simple problems in the literature, however, we
think that it showed us that we should improve the efficiency
of our algorithms.

Discussion, Applications and Future Work

The slowness of searching the factorial function made us re-
alize that we need improvements in both the search and the

update algorithms. Some doubts have been raised whether
our system can scale up to AGI since the search space is
vast. In AGI, the search space is always vast, whether is
the solution space, program space, proof space, or another
space. Since no system has been shown to be able to write
any substantially long program, we think that these doubts
are premature. The path to bootstrapping most likely lies in
more sophisticated search and update/memory mechanisms
for a general purpose induction machine. Therefore, we
think that we should proceed by improving upon the existing
system. Regarding search, we can try to avoid semantically
incorrect programs and try to consider time and space com-
plexity of candidate solutions. The approach of HSEARCH
may be applied. The probability model can be further ad-
vanced. For update, ever more sophisticated algorithms are
possible. Another major direction that Solomonoff has sug-
gested is context-aware updates, which may require signifi-
cant changes.

The most important promise of initial AGI implementa-
tions will be to decrease the human contribution in current
Al systems. The heuristic programmers of old school Al re-
search can be replaced by programs like the Gigamachine.
General induction might act as the “glue code” that will
make common sense knowledge bases and natural language
processing truly work. Many problems in Al are solvable
only because the researchers were clever enough to find a
good representation. AGI programs may automate this task.
The current programs in machine learning and data mining
may be supplemented by AGI methods to yield much more
powerful systems. In particular, hybrid systems may lead to
more intelligent ensemble learners and general data mining.

We will develop a more realistic training sequence featur-
ing recursive problems, optimizing search and implement-
ing the remaining two update algorithms. After that, we
will extend our implementation to work on parallel multi-
core and/or GPU hardware. Those new architectures are ex-
tremely suitable for our system which will not require much
synchronization between cores and requires little memory
per core. We will then complete the implementation of
Phase 1, implement the Phase 2 of Solomonoff’s system,
and attempt implementing other AGI proposals such as the
Godel Machine on top of our AGI kernel.

References

[0Ozk09] Eray Ozkural. Gigamachine: incremental machine
learning on desktop computers. http://examachine.
net/papers/gigamachine—-draft.pdf, Decem-
ber 2009. Draft.

[Sch04] Juergen Schmidhuber. Optimal ordered problem
solver. Machine Learning, 54:211-256, 2004.

[Sol02] Ray Solomonoff. Progress in incremental machine
learning. In NIPS Workshop on Universal Learning Algo-
rithms and Optimal Search, Whistler, B.C., Canada, De-
cember 2002.

[Sol09] Ray Solomonoff. Algorithmic probability: Theory
and applications. In M. Dehmer and F. Emmert-Streib, edi-
tors, Information Theory and Statistical Learning, Springer
Science+Business Media, pages 1-23. N.Y., 2009.


http://examachine.net/papers/gigamachine-draft.pdf
http://examachine.net/papers/gigamachine-draft.pdf

	Introduction
	An overview of Gigamachine
	Design and implementation choices

	Contributions
	Search algorithms
	Update algorithms

	Training Sequence and Experiments
	Discussion, Applications and Future Work

