Program Representation for General Intelligence

Moshe Looks
madscience@google.com

Ben Goertzel
ben@novamente.net
Intro: The Importance of Program Representation

- What are programs?
 - well-specified
 - compact
 - combinatorial
 - hierarchical

- Why use programs for AGI
 - all of the above
 - compression = understanding
 - expressiveness allows for compression

- Why program representation is important for AGI
 - not in the limit
 - in practice, matters a great deal ...
Program Spaces are Not Nice

- Open-endedness
 - programs vary in shape and size

- Over-representation
 - syntax \(\neq\) semantics

- Chaotic execution
 - similar syntax \(\rightarrow\) similar semantics

- High resource-variance
 - programs vary in memory and space requirements
Solution?
Solution?

More Knowledge!
Definitions

- Let S be a space of programmatic functions of the same type
 - e.g. λ-expressions mapping from lists to numbers
 - typically, the distance metric is implied
 - by the set of allowed transformations to program trees
- Let B be a corresponding space of program behaviors
 - e.g. vectors of sample outputs
 - or probability distributions over such
 - distance reflects our preferences over behaviors
- Let P be probability distribution over B
 - describes what sorts of problems we expect
- Let $R(n) = \{s \in S | size(s) \leq n\}$
One More Definition

- $R(n) \ d\text{-covers } (B, P) \text{ to extent } p \text{ if:}$
 - for a random behavior $b \in B$ chosen according to P
 - there is some program in $R(n) \subseteq S$ with behavior within distance d of b
 - with probability p
Tractable Representations

- $R(n)$ d-covers (B, P) to extent p if:
 - for a random behavior $b \in B$ chosen according to P
 - there is some program in $R(n)$ (⊆ S) with behavior within distance d of b
 - with probability p

- S is tractable if:
 - for fixed d, $p \to 1$ as $n \to \infty$
 - for fixed p, $d \to 0$ as $n \to \infty$
 - for fixed d and p, the needed n is minimized
 - distances in S (syntax) and B (semantics) are highly correlated weighted by P
Empirical Demonstration: Before
Empirical Demonstration: After
Empirical Demonstration: After (3D)
Read the Paper to Find Out

- Types
 - Boolean
 - true, false
 - Number
 - -3, 12.34
 - Lists
 - [true, true, false], [1, 0, 3]
 - Tuples
 - <2, true>, <-3.2, false>
 - Enums
 - foo, bar, baz
 - Functions
 - \[f(x, y, z) := \text{if } x \text{ then } y \times z \text{ else } y + z + 2 \]
 - Action Results
 - and (go-left, grab, go-right, drop)
 - explains how to handle side-effects
Read the Paper to Find Out

- **Reductions**
 - $x \land y \land x \rightarrow x \land y$
 - compressive abstractions
 - introduce new functions to shrink programs

- **Rationale**
 - reduce the size of the space (n)
 - increase the correlation between distances in S and B
Read the Paper to Find Out

- Neutral Transformations (via Olsson's ADATE via Kimura)
 - abstraction
 - $x + 3*y*z \rightarrow f(a) := 3*y*a, x + f(z)$
 - distribution
 - $x + y* (\text{if } p \text{ then } z \text{ else } 42) \rightarrow$
 - if p then $x + y*z$ else $x + y*42$
 - arity broadening
 - $f(x, y) \rightarrow f(x, y, z)$
 - list broadening
 - $f(x) \rightarrow f([x])$
 - conditional insertion
 - $\text{foo} \rightarrow \text{if true then foo else goo}$

- Rationale
 - speed convergence of $p \rightarrow 1$ (for fixed d)
 - speed convergence of $d \rightarrow 0$ (for fixed p)
Non-neutral Transformations
- most are specialized by type
- fold functions for iteration
 - \(\text{fold}(+, [2, 3, 4]) = 2 + 3 + 4 \)

Scalability
- ways to heuristically prune transformations
 - reduces the search space
- might use Sinot's Director Strings
 - distribute function arguments

Conclusion
Thank You!

Moshe Looks
madscience@google.com

Ben Goertzel
ben@novamente.net