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Inductive Program Synthesis (IP)
Inductive Program Synthesis (IP) researches the automatic
construction of (recursive) programs from incomplete specifications,
i.e. input/ouput examples (I/O examples)

Example (reverse)
I/O-examples:

reverse [] = []
reverse [a] = [a]
reverse [a,b] = [b,a]
reverse [a,b,c] = [c,b,a]

Induced functional program:

reverse [] = []
reverse (x:xs) = (reverse xs) ++ [x]
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Key Concepts

Preference Bias criteria to choose among (semantically different!)
candidate solutions, i.e syntactic size, number of case
distinctions, runtime (search strategy).

Restriction Bias Restricts the inducable class of problems, through
syntactic constraints, i.e. linear recursion as sole kind of
recursion (hypothese language)

Background Knowledge already implemented functions, which can
by used for synthesis, i.e. append and partition for
quicksort

Sub Functions Functions neither defined as target functions nor in
the background knowledge, but automaticallly
introduced as auxiliary functions by the IP algorithm
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Different Approaches

analytic generate & test
systematic evolutionary

logic DIALOGS-II FOIL/FFOIL,
GOLEM

functional THESYS,
IGOR I,
IGOR II

MAGIC-
HASKELLER

ADATE

Inductive Logic Programming (ILP)

Inductive Functional Programming (IFP)
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Different Approaches

analytic generate & test
systematic evolutionary

logic DIALOGS-II FOIL/FFOIL,
GOLEM

functional THESYS,
IGOR I,
IGOR II

MAGIC-
HASKELLER

ADATE

Inductive Logic Programming (ILP)
ILP is machine learning with representation and inference based
on Computational Logic (PROLOG).
IP as special case of ILP.

Inductive Functional Programming (IFP)
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Different Approaches

analytic generate & test
systematic evolutionary

logic DIALOGS-II FOIL/FFOIL,
GOLEM

functional THESYS,
IGOR I,
IGOR II

MAGIC-
HASKELLER

ADATE

Inductive Logic Programming (ILP)

Inductive Functional Programming (IFP)
Based Term Rewriting or Combinatory Logic / λ-calculus
primary objective is program learning
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Different Approaches
analytic generate & test

systematic evolutionary
logic DIALOGS-II FOIL/FFOIL,

GOLEM

functional THESYS,
IGOR I,
IGOR II

MAGIC-
HASKELLER

ADATE

Analytic
different inputs are “sub problems” of each other
so their output is included in other outputs as subterms
analyze I/Os and fold regularities into a recursive definition

Generate & Test
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Different Approaches
analytic generate & test

systematic evolutionary
logic DIALOGS-II FOIL/FFOIL,

GOLEM

functional THESYS,
IGOR I,
IGOR II

MAGIC-
HASKELLER

ADATE

Analytic

Generate & Test (1): systematic
enumerate all correct programs systematically
constraints limit search space (type information, library, modes)
I/Os are only used as filter
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Different Approaches
analytic generate & test

systematic evolutionary
logic DIALOGS-II FOIL/FFOIL,

GOLEM

functional THESYS,
IGOR I,
IGOR II

MAGIC-
HASKELLER

ADATE

Analytic

Generate & Test (2): evolutionary heuristic
use genetic coperators to traverse search space
fitness function maps programs to numeric space
evaluated program attributes are e.g. runtime, program size, etc.
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Different Approaches

analytic generate & test
systematic evolutionary

logic DIALOGS-II FOIL/FFOIL,
GOLEM

functional THESYS,
IGOR I,
IGOR II

MAGIC-
HASKELLER

ADATE

large diversity of underlying theoretical concepts and requirements⇒
hard to compare and evaluate

CogSys Group (Univ. Bamberg) Inductive Programming AGI 2009, Arlington 6 / 22



Need for Unifying Framework

Provide system independent syntax and operational semantics

Benefits
+ consistent representation of different target languages
+ gives a unifying (“normalised”) perspecitve on IP systems
+ helps identifying system specific strength and weaknesses
+ provide a transparent evaluation and comparison of IP systems
+ basis for a general IP algorithm
+ means for an abstract problem definition language

(IP Problem Definition Language)

Conditional Constructor (Rewrite) Systems (CCS)
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The paper at one glance

C FT FB FI E+ E− BK X2 search strategy

ADATE • {·} • • • • • ∅ global search, g ’n t

FLIP • • • ∅ ◦ ◦,∅ • ∅ sequential covering

FFOIL c • ⊃ ∅ ◦ ◦,∅ ◦ ∅ sequential covering

GOLEM • {·} • ∅ ◦ ◦ • ∅ sequential covering

IGOR I • {·} ∅ • ◦ ∅ ∅ ∅ 2-step, global search

IGOR II • • • • ◦ ∅ ◦ ∅ global search

MAGH. • {·} • ∅ • • • ◦ breadth first, g ’n t

• unrestricted / conditional rules ◦ restricted / unconditional rules
{·} singleton set ∅ empty set
c constants ⊃ built in predicates
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Empirical Results

is
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ADATE 70.0 78.0 80.0 18.81 — 214.87
FLIP × — 134.24⊥ 448.55⊥ × ×
FFOIL × — 0.4⊥ < 0.1⊥ 8.1⊥ 0.1⊥

GOLEM 0.714 — 0.66⊥ 0.298 — 0.016⊥

IGORII 0.105 0.103 0.200 0.127 ⊙ ⊙
MAGH. 0.01 0.08 ⊙ 157.32 — ×
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ADATE 822.0 0.2 2.0 — 4.3
FLIP × 0.020 17.868 0.130 448.90⊥

FFOIL 0.7⊥ 0.1 0.1⊥ < 0.1⊥ < 0.1
GOLEM 1.062 < 0.001 0.033 — < 0.001
IGORII 5.695 0.007 0.152 0.019 0.023

MAGH. 19.43 0.01 ⊙ — 0.30

— not tested× stack overflow⊙ timeout ⊥ wrong
all runtimes in seconds
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Our Project

http://www.cogsys.wiai.uni-bamberg.de/effalip/

Publications
Downloads
Links
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inductive-programming.org

http://www.inductive-programming.org

Introduction to IP
Systems’ overview
Repository with benchmark problems
IP related publications
Mailing list
. . .
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Thank you
for your attention!
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...
estion

Questions?
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Questions?
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Questions?

Questions?

Questions?

Questions?

Questions?

Questions?
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CCS in a nutshell

given a set of function symbols Σ and a set of variables X
terms over Σ and X denoted as TΣ(X )

constructors C and defined function symbols F
Σ = F ∪ C, F ∩ C = ∅
programs are sets of rewrite rules lhs → rhs
lhs is of the form F (p1, . . . ,pn) with F ∈ F and pi ∈ TC(X )

conditional rewrite rules lhs → rhs ⇐ cond where
cond ≡ {v1 = u1, . . . , vn = un} and vi ,ui ∈ TΣ(X )

rewriting binds free variables in vi , modelling variable declaration,
let- and case-expressions
higher-order context with X = X1 ∪ X2 and abstraction operator
[−]−
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Target Languages in the CCS Framework
CCS

multlast([]) -> []
multlast([A]) -> [A]
multlast([A,B|C]) -> [D,D|E]

<= [D|E] = multlast([B|C])

Haskell
multlast [] = []
multlast [A] = [A]
multlast [A,B|C] =

let [D|E] = multlast([B|C]) in [D,D|E]

Prolog
multlast([], []).
multlast([A], [A]).
multlast([A,B|C],[D,D|E]) :-

multlast([B|C],[D|E]).
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The IP task in CCS

function symbols F = FT ∪ FB ∪ FI

user defined rules R = E+ ∪ E− ∪ BK

restriction bias (lhs, rhs, u, v ⊆ TΣ(X ))

preference bias (�)

IP Task
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The IP task in CCS

function symbols F = FT ∪ FB ∪ FI

FT function symbols of target functions
FB function symbols of background knowledge
FI pool of function symbols for inventing sub functions

user defined rules R = E+ ∪ E− ∪ BK

restriction bias (lhs, rhs, u, v ⊆ TΣ(X ))
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The IP task in CCS
function symbols F = FT ∪ FB ∪ FI

user defined rules R = E+ ∪ E− ∪ BK
E+ positive evidence F (t1, . . . , tn)→ r
E− negative evidence as inequalities F (t1, . . . , tn)→ r
BK background knowledge

F (t1, . . . , tn)→ r ⇐ {v1 = u1, . . . , vn = un}

restriction bias (lhs, rhs, u, v ⊆ TΣ(X ))

preference bias (�)

IP Task
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The IP task in CCS

function symbols F = FT ∪ FB ∪ FI

user defined rules R = E+ ∪ E− ∪ BK

restriction bias (lhs, rhs, u, v ⊆ TΣ(X ))
Allow only a subset of TΣ(X ) for lhss, rhss, and conditions

preference bias (�)

IP Task
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The IP task in CCS

function symbols F = FT ∪ FB ∪ FI

user defined rules R = E+ ∪ E− ∪ BK

restriction bias (lhs, rhs, u, v ⊆ TΣ(X ))

preference bias (�)
Partial ordering on terms, lhss, rhss, conditions, rules, and programs

IP Task
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The IP task in CCS
function symbols F = FT ∪ FB ∪ FI

user defined rules R = E+ ∪ E− ∪ BK

restriction bias (lhs, rhs, u, v ⊆ TΣ(X ))

preference bias (�)

IP Task
Find a set of rules RT s.t.

RT ∪ BK |= E+

RT ∪ BK 6|= E−

and RT is optimal w.r.t. restriction and preference bias.
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Higher-Order Rewriting

map([u]Z(u),nil) -> nil
map([u]Z(u),cons(X,Y)) -> cons(Z(X),map([u]Z(u),Y))

more Terese p 612
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ADATE

C unrestricted
FT singleton
FB unrestricted
FI ∅

E+ unrestricted
E− unrestricted
BK unrestricted
X2 ∅

restr. bias subset of SML
pref. bias user defined fitness function

search str. global search, generate and test

CogSys Group (Univ. Bamberg) Inductive Programming AGI 2009, Arlington 17 / 22



FLIP

C unrestricted
FT unrestricted
FB unrestricted
FI ∅

E+ unconditional
E− unconditional (may be empty)
BK unrestricted
X2 ∅

restr.bias lhs is a consistent (w.r.t. evidence) but restricted (no new
variables on rhs least general generalisation of two
positive examples rhs is derived via inverse narrowing
from two lhss

pref. bias minimum discription length and coverage
search str. heuristic search with sequential covering

CogSys Group (Univ. Bamberg) Inductive Programming AGI 2009, Arlington 18 / 22



FFOIL

C constants, including {true, false}
FT singleton
FB ∪{=, 6=, <,≤, >,≥,¬}
FI ∅

E+ unconditional
E− unconditional (may be empty)
BK unconditional
X2 ∅

restr. bias l , v ∈ {F (i1, . . . , in)|ii ∈ X1,F ∈ F}
r ,u ∈ TΣ(X )

pref. bias foil gain
search str. sequential covering

CogSys Group (Univ. Bamberg) Inductive Programming AGI 2009, Arlington 19 / 22



GOLEM

C ∪{true, false}
FT singleton
FB unrestricted
FI ∅

E+ unconditional
E− unconditional
BK unrestricted
X2 ∅

restr. bias l , v ∈ {F (i1, . . . , in)|ii ∈ TΣ(X ),F ∈ F}
r ,u ∈ TΣ(X )

pref. bias clause with highest coverage in a lattice of least general
generalisations relative to BK of randomly picked
examples

search str. sequential covering
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IGOR II

C unrestricted
FT unrestricted
FB unrestricted
FI domain of invented function equals domain of calling

function (no variable invention)
E+ unconditional
E− ∅
BK unconditional
X2 ∅

restr. bias non-overlapping lhss, rhs = F (. . .),F 6∈ FI , conditions
model only let-expressions

pref. bias fewer case distinctions, most specific patterns, fewer
recursive calls or calls to BK

search str. best first
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MAGICHASKELLER

C unrestricted
FT singleton
FB unrestricted
FI ∅

E+ unrestricted
E− unrestricted
BK unrestricted
X2 only via paramorphisms from BK

restr. bias type constraints, composition of functions from BK
pref. bias smallest w.r.t. BK

search str. breadth first, generate and test
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