

Google Automated Program Learning for AGI

Moshe Looks madscience@google.com

- Formulations of program learning & current approaches
 What distinguishes program learning from ML?
- Some achievements so far
- What program learning can't do
- What program learning can do for AGI
- Future

What are Programs?

- Well-specified
- Compact
- Combinatorial
- Hierarchical

- Classical induction
 - o f([a, b, c], 2) = c
 f([x, y], 0) = x
 f = ?
- Probabilistic induction
 - Maximize P(D|H) + P(H) over all H in some program space
 - Harder: learn the distribution over program space
 - Related: learning algorithms for first-order probabilistic models
- Optimization
 - Maximize f(x) : X → R over program space X
 - Learn to maximize reward (i.e. reinforcement learning)

What are Program Spaces?

- Functions of some type in a pure fragment of Lisp/ML/etc.
 - o **E.g.** List of Symbols, Nat \rightarrow Symbol
- Untyped treelike structure (s-exprs)
- Arbitrary typed functions
- Arbitrary typed functions + core operations

Approaches

- Analytical/Synthetic
 - $\circ\,$ Summers' synthesis method
 - Some ILP systems
- Generate & Test
 - Local Search
 - Evolutionary
 - Brute-Force
- Hybrid

What's Been Done

- Path finding in directed graphs
 - ADATE
 - o Olsson, 1999

- General O(n*log(n)) sorting function from exa
 - Object Oriented Genetic Programming
 - Agapitos & Lucas, 2006
- Recursive pure functions on lists (*append, reverse, length,etc.*)
 ADATE, Igor, Igor2 (also handles mutual recursion), MagicHaskeller,etc.

Automated Program Learning for AGI, Moshe Looks

What's Been Done

- Block Stacking
 - Hayek-4
 - Baum & Durdanovic, 2000

- Towers of Hanoi
 - Optimal Ordered Problem Solver
 - \circ Schmidhuber, 2006

What's Been Done

- Numerous patentable "human competitive" innovations
 - Quantum algorithms (Spector et al.)
 - Circuits (Koza et al.)
 - More at http://www.genetic-programming.com/humancompetitive.html

"Quantum Computing Applications of Genetic Programming" (Spector, Barnum, and Bernstein 1999).

What's Been Done

- Unsupervised rule discovery
 - o E.g. mining the National Longitudinal Survey of Youth
- Reinforcement learning for agents
 - $\circ\,$ E.g. Novamente virtual pets

What Program Learning Can't Do

- Can't overrule no-free-lunch
 - Learning is intractable
 - Averaged over all possible scoring functions ...
- Can't learn to model "arbitrary" Turing machines
 Near-decomposability (Simon)
- Can't scale up to large programs
 - Without external guidance
 - Or strong (structural) inductive bias
 - Or relatedness to past problems

What Program Learning Can't Do

Google

What Program Learning Can't Do

Automated Program Learning for AGI, Moshe Looks

Program Learning for AGI – Two Viewpoints

- Modeling human programmers
 - AM (Artificial Mathematician)
- Modeling human programming
 - $\circ\,$ Building integrative systems
 - Program learning as one component

"One understands a problem when one has mental programs that can solve it and many naturally occurring variations" - Eric Baum, A working hypothesis for general intelligence

Google

- Noise tolerance
- "Clear box" evaluation model
- Decent anytime performance
- Handle a full range of types (incl. side effects) & control structures
- Probabilistic/uncertain semantics for background knowledge

- MOSES Meta-Optimizing Semantic Evolutionary Search
 o designed with AGI in mind
- Noise tolerant can even cope with changes in scoring function
- "Clear box" evaluation model
 - Exploits a core set of functions with known properties
- Decent anytime performance
 - \circ Was generational, transitioning to incremental
- Handle a full range of types (incl. side effects) control structures

 Working on it; see AGI-09 paper "Program Representation for General Intelligence" (Looks & Goertzel)
- Probabilistic/uncertain semantics for background knowledge

 Incorporates probabilistic models over program subspaces
 Working to incorporate models over substructures & functions

(Uncertain) Logical Inference Rules

- Logical inference (small steps) vs. program learning (big steps)
- Logical inference helps program learning

 Infer which subfunctions are likely to be useful
 - based on past learning tasks
 - or explict declarative knowledge
 - Infer which programs are worth actually executing
- Program learning helps logical inference
 - Complementary forms of abstraction
 - E.g. compressing/generalizing logical knowledge
 - Tries to validate hypotheses directly
 - i.e. logical inference provides a scoring function
- A major plank of the Novamente design...

Automated Program Learning for AGI, Moshe Looks

- In some cases more specialized learning algos may be appropriate
- Some success in learning visual routines with GP
 - Johnson, "Evolving Visual Routines"
- Unsupervised learning also possible based on reasoning or interestingness functions

Space, Time, & Language

- Calvin & Bickerton
 - Evolutionary learning in cortical columns
 - $\circ\,$ Sentences, rock throwing etc.
 - These are programs!
- Computational substrate (Cassimatis et al.)
 - Set of core cognitive mechanisms based on understanding of
 - space & time
 - causality
 - social relations / theory of mind
- Translated to program learning terms
 - Given programs for solving problems in these domains
 - $\circ\,$ And mechanisms for adapting to solve variations
 - \circ ... and many other domains will fall out quickly

Applying Bruce-Force

- Many approaches to program induction are embarrassingly parallel
- If you can't solve a problem, try doubling the # of machines
- If a problem is of long-term interest, apply unused resources to it

Reliability of Learned Programs

- PAC assurance compact programs generalize well
 What if this is not good enough?
- In the general case, can't prove properties of programs
 - Of course particular programs are different
 - Speculation: "learnable" programs will be easier
- Theorem-provers such as ACL2 (A Computational Logic for Applicative Common Lisp) are quite expressive
 - But not very efficient...
 - $\circ\,$ Recent work on learning over proofs
 - Generalization, Lemma Generation, and Induction in ACL2 (Erickson, 2008)
- Program learning makes theorem-proving more efficient
- Theorem-proving makes (some) learned programs more reliable

Stability Under Self-Modification

- Eventually, want to adapt/improve AGI's source code
 - How can we ensure stability?
 - Do we want to?
- Empirical methods:
 - Important to avoid opacity as much as possible
 - Clear-box program learning helps here...
- Formal methods:
 - Prove invariant properties as self-modifications are introduced
 - Hard problem: prove that such properties hold to begin with
 - What sort of properties?
 - no currency leaks (rationality)
 - no resource leaks (efficiency)
 - properties of goals (very hard problem)

Moshe Looks madscience@google.com

Program Representation for General Intelligence, Moshe Looks & Ben Goertzel