Automated Program Learning for AGI

Moshe Looks
madscience@google.com
Outline

- Formulations of program learning & current approaches
 - What distinguishes program learning from ML?
- Some achievements so far
- What program learning can't do
- What program learning *can* do for AGI
- Future
What are Programs?

- Well-specified
- Compact
- Combinatorial
- Hierarchical
What is Program Learning?

- Classical induction
 - \(f([a, b, c], 2) = c \)
 - \(f([x, y], 0) = x \)
 - \(f = ? \)

- Probabilistic induction
 - Maximize \(P(D|H) + P(H) \) over all \(H \) in some program space
 - Harder: learn the distribution over program space
 - Related: learning algorithms for first-order probabilistic models

- Optimization
 - Maximize \(f(x) : X \to \mathbb{R} \) over program space \(X \)
 - Learn to maximize reward (i.e. reinforcement learning)
What are Program Spaces?

- Functions of some type in a pure fragment of Lisp/ML/etc.
 - E.g. List of Symbols, Nat → Symbol
- Untyped treelike structure (s-exprs)
- Arbitrary typed functions
- Arbitrary typed functions + core operations
Approaches

- Analytical/Synthetic
 - Summers' synthesis method
 - Some ILP systems
- Generate & Test
 - Local Search
 - Evolutionary
 - Brute-Force
- Hybrid
What's Been Done

- Path finding in directed graphs
 - ADATE
 - Olsson, 1999

- General $O(n \log(n))$ sorting function from examples
 - Object Oriented Genetic Programming
 - Agapitos & Lucas, 2006

- Recursive pure functions on lists (append, reverse, length, etc.)
 - ADATE, Igor, Igor2 (also handles mutual recursion), MagicHaskeller, etc.
What's Been Done

- Block Stacking
 - Hayek-4
 - Baum & Durdanovic, 2000

- Towers of Hanoi
 - Optimal Ordered Problem Solver
 - Schmidhuber, 2006
What's Been Done

- Numerous patentable "human competitive" innovations
 - Quantum algorithms (Spector et al.)
 - Circuits (Koza et al.)

“Quantum Computing Applications of Genetic Programming” (Spector, Barnum, and Bernstein 1999).
What's Been Done

- Unsupervised rule discovery
 - E.g. mining the National Longitudinal Survey of Youth
- Reinforcement learning for agents
 - E.g. Novamente virtual pets
What Program Learning Can't Do

- Can't overrule no-free-lunch
 - Learning is intractable
 - Averaged over all possible scoring functions ...

- Can't learn to model "arbitrary" Turing machines
 - Near-decomposability (Simon)

- Can't scale up to large programs
 - Without external guidance
 - Or strong (structural) inductive bias
 - Or relatedness to past problems
What Program Learning Can't Do

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8
What Program Learning Can't Do
What Program Learning Can't Do
Program Learning for AGI – Two Viewpoints

- Modeling human programmers
 - AM (Artificial Mathematician)
- Modeling human programming
 - Building integrative systems
 - Program learning as one component

"One understands a problem when one has mental programs that can solve it and many naturally occurring variations"
- Eric Baum, A working hypothesis for general intelligence
Program Learning for AGI – Desiderata

- Noise tolerance
- “Clear box” evaluation model
- Decent anytime performance
- Handle a full range of types (incl. side effects) & control structures
- Probabilistic/uncertain semantics for background knowledge
MOSES – Meta-Optimizing Semantic Evolutionary Search
 - designed with AGI in mind
- Noise tolerant - can even cope with changes in scoring function
- “Clear box” evaluation model
 - Exploits a core set of functions with known properties
- Decent anytime performance
 - Was generational, transitioning to incremental
- Handle a full range of types (incl. side effects) control structures
 - Working on it; see AGI-09 paper “Program Representation for General Intelligence” (Looks & Goertzel)
- Probabilistic/uncertain semantics for background knowledge
 - Incorporates probabilistic models over program subspaces
 - Working to incorporate models over substructures & functions
Logical inference (small steps) vs. program learning (big steps)

- Logical inference helps program learning
 - Infer which subfunctions are likely to be useful
 - based on past learning tasks
 - or explicit declarative knowledge
 - Infer which programs are worth actually executing
- Program learning helps logical inference
 - Complementary forms of abstraction
 - E.g. compressing/generalizing logical knowledge
 - Tries to validate hypotheses directly
 - i.e. logical inference provides a scoring function
- A major plank of the Novamente design...
Perception and Action

- In some cases more specialized learning algos may be appropriate
- Some success in learning visual routines with GP
 - Johnson, "Evolving Visual Routines"
- Unsupervised learning also possible based on reasoning or interestingness functions
Calvin & Bickerton
 - Evolutionary learning in cortical columns
 - Sentences, rock throwing etc.
 - These are programs!
Computational substrate (Cassimatis et al.)
 - Set of core cognitive mechanisms based on understanding of
 - space & time
 - causality
 - social relations / theory of mind
Translated to program learning terms
 - Given programs for solving problems in these domains
 - And mechanisms for adapting to solve variations
 - ... and many other domains will fall out quickly
Applying Bruce-Force

- Many approaches to program induction are embarrassingly parallel
- If you can't solve a problem, try doubling the # of machines
- If a problem is of long-term interest, apply unused resources to it
Reliability of Learned Programs

- PAC assurance - compact programs generalize well
 - What if this is not good enough?
- In the general case, can't prove properties of programs
 - Of course particular programs are different
 - Speculation: "learnable" programs will be easier
- Theorem-provers such as ACL2 (A Computational Logic for Applicative Common Lisp) are quite expressive
 - But not very efficient...
 - Recent work on learning over proofs
 - Generalization, Lemma Generation, and Induction in ACL2 (Erickson, 2008)

- Program learning makes theorem-proving more efficient
- Theorem-proving makes (some) learned programs more reliable
Stability Under Self-Modification

- Eventually, want to adapt/improve AGI's source code
 - How can we ensure stability?
 - Do we want to?
- Empirical methods:
 - Important to avoid opacity as much as possible
 - Clear-box program learning helps here...
- Formal methods:
 - Prove invariant properties as self-modifications are introduced
 - Hard problem: prove that such properties hold to begin with
 - What sort of properties?
 - no currency leaks (rationality)
 - no resource leaks (efficiency)
 - properties of goals (very hard problem)
Thank You!

Q&A

Moshe Looks
madscience@google.com