
Program Representation for General Intelligence

Moshe Looks
Google, Inc.

madscience@google.com

Ben Goertzel
Novamente LLC

ben@novamente.net

Abstract

Traditional machine learning systems work with relatively
flat, uniform data representations, such as feature vectors,
time-series, and context-free grammars. However, reality
often presents us with data which are best understood in
terms of relations, types, hierarchies, and complex functional
forms. One possible representational scheme for coping with
this sort of complexity is computer programs. This imme-
diately raises the question of how programs are to be best
represented. We propose an answer in the context of ongoing
work towards artificial general intelligence.

Background and Motivation
What are programs? The essence of programmatic repre-
sentations is that they are well-specified, compact, combi-
natorial, and hierarchical. Well-specified: unlike sentences
in natural language, programs are unambiguous; two dis-
tinct programs can be precisely equivalent. Compact: pro-
grams allow us to compress data on the basis of their regu-
larities. Accordingly, for the purposes of this paper, we do
not consider overly constrained representations such as the
well-known conjunctive and disjunctive normal forms for
Boolean formulae to be programmatic. Although they can
express any Boolean function (data), they dramatically limit
the range of data that can be expressed compactly, compared
to unrestricted Boolean formulae. Combinatorial: programs
access the results of running other programs (e.g. via func-
tion application), as well as delete, duplicate, and rearrange
these results (e.g., via variables or combinators). Hierarchi-
cal: programs have intrinsic hierarchical organization, and
may be decomposed into subprograms.

Baum has advanced a theory “under which one under-
stands a problem when one has mental programs that can
solve it and many naturally occurring variations” (Bau06).
Accordingly, one of the primary goals of artificial general
intelligence is systems that can represent, learn, and reason
about such programs (Bau06; Bau04). Furthermore, inte-
grative AGI systems such as Novamente (LGP04) may con-
tain subsystems operating on programmatic representations.
Would-be AGI systems with no direct support for program-
matic representation will clearly need to represent proce-
dures and procedural abstractions somehow. Alternatives
such as recurrent neural networks have serious downsides,
however, including opacity and inefficiency.

Note that the problem of how to represent programs for
an AGI system dissolves in the limiting case of unbounded
computational resources. The solution is algorithmic prob-
ability theory (Sol64), extended recently to the case of se-
quential decision theory (Hut05). The latter work defines
the universal algorithmic agent AIXI, which in effect sim-
ulates all possible programs that are in agreement with the
agent’s set of observations. While AIXI is uncomputable,
the related agent AIXItl may be computed, and is superior
to any other agent bounded by time t and space l (Hut05).
The choice of a representational language for programs1 is
of no consequence, as it will merely introduce a bias that
will disappear within a constant number of time steps.2

The contribution of this paper is providing practical tech-
niques for approximating the ideal provided by algorithmic
probability, based on what Pei Wang has termed the as-
sumption of insufficient knowledge and resources (Wan06).
Given this assumption, how programs are represented is of
paramount importance, as is substantiated the next two sec-
tions, where we give a conceptual formulation of what we
mean by tractable program representations, and introduce
tools for formalizing tractability. The fourth section of the
paper proposes an approach for tractably representing pro-
grams. The fifth and final section concludes and suggests
future work.

Representational Challenges
Despite the advantages outlined in the previous section,
there are a number of challenges in working with program-
matic representations:

• Open-endedness – in contrast to other knowledge rep-
resentations current in machine learning, programs vary
in size and “shape”, and there is no obvious problem-
independent upper bound on program size. This makes
it difficult to represent programs as points in a fixed-
dimensional space, or to learn programs with algorithms
that assume such a space.

• Over-representation – often, syntactically distinct pro-
grams will be semantically identical (i.e. represent
the same underlying behavior or functional mapping).

1As well as a language for proofs in the case of AIXItl.
2The universal distribution converges quickly (Sol64).

Lacking prior knowledge, many algorithms will ineffi-
ciently sample semantically identical programs repeat-
edly (GBK04; Loo07b).

• Chaotic Execution – programs that are very similar,
syntactically, may be very different, semantically. This
presents difficulties for many heuristic search algorithms,
which require syntactic and semantic distance to be cor-
related (TVCC05; Loo07c).

• High resource-variance – programs in the same space
vary greatly in the space and time they require to execute.

Based on these concerns, it is no surprise that search over
program spaces quickly succumbs to combinatorial explo-
sion, and that heuristic search methods are sometimes no
better than random sampling (LP02). Regarding the dif-
ficulties caused by over-representation and high resource-
variance, one may of course object that determinations of
e.g. programmatic equivalence for the former, and e.g. halt-
ing behavior for the latter, are uncomputable. Given the
assumption of insufficient knowledge and resources, how-
ever, these concerns dissolve into the larger issue of com-
putational intractability and the need for efficient heuristics.
Determining the equivalence of two Boolean formulae over
500 variables by computing and comparing their truth ta-
bles is trivial from a computability standpoint, but, in the
words of Leonid Levin, “only math nerds would call 2500

finite” (Lev94). Similarly, a program that never terminates
is a special case of a program that runs too slowly to be of
interest to us.

In advocating that these challenges be addressed through
“better representations”, we do not mean merely trading one
Turing-complete programming language for another; in the
end it will all come to the same. Rather, we claim that
to tractably learn and reason about programs requires us to
have prior knowledge of programming language semantics.
The mechanism whereby programs are executed is known
a priori, and remains constant across many problems. We
have proposed, by means of exploiting this knowledge, that
programs be represented in normal forms that preserve their
hierarchical structure, and heuristically simplified based on
reduction rules. Accordingly, one formally equivalent pro-
gramming language may be preferred over another by virtue
of making these reductions and transformations more ex-
plicit and concise to describe and to implement.

What Makes a Representation Tractable?
Creating a comprehensive formalization of the notion of a
tractable program representation would constitute a signifi-
cant achievement; and we will not fulfill that summons here.
We will, however, take a step in that direction by enunciating
a set of positive principles for tractable program representa-
tions, corresponding closely to the list of representational
challenges above. While the discussion in this section is es-
sentially conceptual rather than formal, we will use a bit of
notation to ensure clarity of expression; S to denote a space
of programmatic functions of the same type (e.g. all pure
Lisp λ-expressions mapping from lists to numbers), and B
to denote a metric space of behaviors.

In the case of a deterministic, side-effect-free program,
execution maps from programs in S to points in B, which
will have separate dimensions for function outputs across
various inputs of interest, as well as dimensions correspond-
ing to the time and space costs of executing the program.
In the case of a program that interacts with an external
environment, or is intrinsically nondeterministic, execution
will map from S to probability distributions over points in
B, which will contain additional dimensions for any side-
effects of interest that programs in S might have. Note
the distinction between syntactic distance, measured as e.g.
tree-edit distance between programs in S, and semantic dis-
tance, measured between programs’ corresponding points in
or probability distributions over B. We assume that seman-
tic distance accurately quantifies our preferences in terms of
a weighting on the dimensions of B; i.e., if variation along
some axis is of great interest, our metric for semantic dis-
tance should reflect this.

Let P be a probability distribution over B that describes
our knowledge of what sorts of problems we expect to en-
counter, and let R(n) ⊆ S be the set of all of the programs
in our representation with (syntactic) size no greater than
n. We will say that “R(n) d-covers the pair (B,P) to ex-
tent p” if p is the probability that, for a random behavior
b ∈ B chosen according to P , there is some program in R
whose behavior is within semantic distance d of b. Then,
some among the various properties of tractability that seem
important based on the above discussion are as follows:

• for fixed d, p quickly goes to 1 as n increases,

• for fixed p, d quickly goes to 0 as n increases,

• for fixed d and p, the minimal n needed for R(n) to d-
cover (B,P) to extent p should be as small as possible,

• ceteris paribus, syntactic and semantic distance (measured
according to P) are highly correlated.

Since execution time and memory usage measures may be
incorporated into the definition of program behavior, mini-
mizing chaotic execution and managing resource variance
emerges conceptually here as a subcase of maximizing cor-
relation between syntactic and semantic distance. Minimiz-
ing over-representation follows from the desire for small n:
roughly speaking the less over-representation there is, the
smaller average program size can be achieved.

In some cases one can empirically demonstrate the
tractability of representations without any special assump-
tions about P: for example in prior work we have shown
that adoption of an appropriate hierarchical normal form can
generically increase correlation between syntactic and se-
mantic distance in the space of Boolean functions (Loo06;
Loo07c). In this case we may say that we have a generically
tractable representation. However, to achieve tractable rep-
resentation of more complex programs, some fairly strong
assumptions about P will be necessary. This should not be
philosophically disturbing, since it’s clear that human intelli-
gence has evolved in a manner strongly conditioned by cer-
tain classes of environments; and similarly, what we need
to do to create a viable program representation system for
pragmatic AGI usage is to achieve tractability relative to the

distribution P corresponding to the actual problems the AGI
is going to need to solve. Formalizing the distributions P of
real-world interest is a difficult problem, and one we will not
address here. However, we hypothesize that the representa-
tions presented in the following section may be tractable to
a significant extent irrespective3 of P , and even more pow-
erfully tractable with respect to this as-yet unformalized dis-
tribution. As weak evidence in favor of this hypothesis, we
note that many of the representations presented have proved
useful so far in various narrow problem-solving situations.

(Postulated) Tractable Representations
We use a simple type system to distinguish between the var-
ious normal forms introduced below. This is necessary to
convey the minimal information needed to correctly apply
the basic functions in our canonical forms. Various systems
and applications may of course augment these with addi-
tional type information, up to and including the satisfaction
of arbitrary predicates (e.g. a type for prime numbers). This
can be overlaid on top of our minimalist system to convey
additional bias in selecting which transformations to apply,
and introducing constraints as necessary. For instance, a call
to a function expecting a prime number, called with a poten-
tially composite argument, may be wrapped in a conditional
testing the argument’s primality. A similar technique is used
in the normal form for functions to deal with list arguments
that may be empty.

Normal Forms
Normal forms are provided for Boolean and number prim-
itive types, and the following parametrized types:
• list types, listT , where T is any type,
• tuple types, tupleT1,T2,...TN

, where all Ti are types, and
N is a positive natural number,

• enum types, {s1, s2, . . . sN}, where N is a positive num-
ber and all si are unique identifiers,

• function types T1, T2, . . . TN → O, where O and all Ti

are types,
• action result types.

A list of type listT is an ordered sequence of any num-
ber of elements, all of which must have type T . A tuple of
type tupleT1,T2,...TN

is an ordered sequence of exactly N
elements, where every ith element is of type Ti. An enum
of type {s1, s2, . . . sN} is some element si from the set.
Action result types concern side-effectful interaction with
some world external to the system (but perhaps simulated,
of course), and will be described in detail in their subsection
below. Other types may certainly be added at a later date,
but we believe that those listed above provide sufficient ex-
pressive power to conveniently encompass a wide range of
programs, and serve as a compelling proof of concept.

The normal form for a type T is a set of elementary func-
tions with codomain T , a set of constants of type T , and a
tree grammar. Internal nodes for expressions described by

3Technically, with only weak biases that prefer smaller and
faster programs with hierarchical decompositions.

the grammar are elementary functions, and leaves are either
Uvar or Uconstant, where U is some type (often U = T).

Sentences in a normal form grammar may be transformed
into normal form expressions as follows. The set of expres-
sions that may be generated is a function of a set of bound
variables and a set of external functions (both bound vari-
ables and external functions are typed):

• Tconstant leaves are replaced with constants of type T ,

• Tvar leaves are replaced with either bound vari-
ables matching type T , or expressions of the form
f(expr1, expr2, . . . exprM), where f is an external func-
tion of type T1, T2, . . . TM → T , and each expri is a nor-
mal form expression of type Ti (given the available bound
variables and external functions).

Boolean Normal Form The elementary functions are
and, or, and not. The constants are {true, false}. The
grammar is:

bool_root = or_form | and_form
| literal | bool_constant

literal = bool_var | not(bool_var)
or_form = or({and_form | literal}{2,})
and_form = and({or_form | literal}{2,}) .

The construct foo{x,} refers to x or more matches of foo
(e.g. {x | y}{2,} is two or more items in sequences
where each item is either an x or a y).
Number Normal Form The elementary functions are
times and plus. The constants are some subset of the ra-
tionals (e.g. those with IEEE single-precision floating-point
representations). The grammar is:

num_root = times_form | plus_form
| num_constant | num_var

times_form = times({num_constant |
plus_form}
plus_form{1,})

| num_var
plus_form = plus({num_constant |

times_form}
times_form{1,})

| num_var .

List Normal Form For list types listT , the elementary
functions are list (an n-ary list constructor) and append.
The only constant is the empty list (nil). The grammar is:

list_T_root = append_form | list_form
| list_T_var | list_T_constant

append_form = append({list_form |
list_T_var}{2,})

list_form = list(T_root{1,}) .

Tuple Normal Form For tuple types tupleT1,T2,...TN
, the

only elementary function is the tuple constructor (tuple).
The constants are T1_constant×T2_constant× · · · ×
TN_constant. The normal form is either a constant, a
var, or tuple(T1_root T2_root . . . TN_root).

Enum Normal Form Enums are atomic tokens with no
internal structure - accordingly, there are no elementary
functions. The constants for the enum {s1, s2, . . . sN} are
the sis. The normal form is either a constant or a var.

Function Normal Form For T1, T2, . . . TN → O, the nor-
mal form is a lambda-expression of arity N whose body is of
type O. The list of variable names for the lambda-expression
is not a “proper” argument - it does not have a normal form
of its own. Assuming that none of the Tis is a list type, the
body of the lambda-expression is simply in the normal form
for type O (with the possibility of the lambda-expressions
arguments appearing with their appropriate types). If one or
more Tis are list types, then the body is a call to the split
function, with all arguments in normal form.

Split is a family of functions with type signatures

(T1, listT1 , T2, listT2 , . . . Tk, listTk
→ O),

tuplelistT1 ,O, tuplelistT2 ,O, . . . tuplelistTk
,O → O .

To evaluate split(f, tuple(l1, o1), tuple(l2, o2), . . .
tuple(lk, ok)), the list arguments l1, l2, . . . lk are examined
sequentially. If some li is found that is empty, then the re-
sult is the corresponding value oi. If all li are nonempty,
we deconstruct each of them into xi : xsi, where xi is
the first element of the list and xsi is the rest. The result
is then f(x1, xs1, x2, xs2, . . . xk, xsk). The split function
thus acts as an implicit case statement to deconstruct lists
only if they are nonempty.

Action Result Normal Form An action result type act
corresponds to the result of taking an action in some world.
Every action result type has a corresponding world type,
world. Associated with action results and worlds are two
special sorts of functions.

• Perceptions - functions that take a world as their first
argument and regular (non-world and non-action-result)
types as their remaining arguments, and return regular
types. Unlike other function types, the result of evalu-
ating a perception call may be different at different times.

• Actions - functions that take a world as their first argu-
ment and regular types as their remaining arguments, and
return action results (of the type associated with the type
of their world argument). As with perceptions, the result
of evaluating an action call may be different at different
times. Furthermore, actions may have side-effects in the
associated world that they are called in. Thus, unlike any
other sort of function, actions must be evaluated, even if
their return values are ignored.

Other sorts of functions acting on worlds (e.g. ones that take
multiple worlds as arguments) are disallowed.

Note that an action result expression cannot appear nested
inside an expression of any other type. Consequently, there
is no way to convert e.g. an action result to a Boolean,
although conversion in the opposite direction is permitted.
This is required because mathematical operations in our lan-
guage have classical mathematical semantics; x and y must
equal y and x, which will not generally be the case if x or
y can have side-effects. Instead, there are special sequential
versions of logical functions which may be used instead.

The elementary functions for action result types are
andseq (sequential and, equivalent to C’s short-circuiting
&&), orseq (sequential or, equivalent to C’s short-circuiting
||), and fails (negates success to failure and vice versa).

The constants may vary from type to type but must at
least contain success and failure, indicating absolute suc-
cess/failure in execution.4 The normal form is as follows:
act_root = orseq_form | andseq_form

| seqlit
seqlit = act | fails(act)
act = act_constant | act_var
orseq_form = orseq({andseq_form |

seqlit}{2,})
andseq_form = andseq({orseq_form

| seqlit}{2,}) .

Program Transformations
A program transformation is any type-preserving mapping
from expressions to expressions. Transformations may be
guaranteed to preserve semantics. When doing program
evolution there is an intermediate category of fitness pre-
serving transformations that may alter semantics. In general,
the only way that fitness preserving transformations will be
uncovered is by scoring programs that have had their seman-
tics potentially transformed to determine their fitness.

Reductions These are semantics preserving transforma-
tions that do not increase some size measure (typically
number of symbols), and are idempotent. For example,
and(x, x, y) → and(x, y) is a reduction for the Boolean
type. A set of canonical reductions is defined for every type
with a normal form. For the number type, the simplifier in
a computer algebra system may be used. The full list of re-
ductions is omitted in this paper for brevity. An expression
is reduced if it maps to itself under all canonical reductions
for its type, and all of its subexpressions are reduced.

Another important set of reductions are the compressive
abstractions, which reduce or keep constant the size of ex-
pressions by introducing new functions. Consider
list(times(plus(a, p, q) r),

times(plus(b, p, q) r),
times(plus(c, p, q) r)) ,

which contains 19 symbols. Transforming this to
f(x) = times(plus(x, p, q) r)
list(f(a), f(b), f(c))

reduces the total number of symbols to 15. One can general-
ize this notion to consider compressive abstractions across
a set of programs. Compressive abstractions appear to
be rather expensive to uncover, although perhaps not pro-
hibitively so (the computation is easily parallelized).

Neutral Transformations Semantics preserving transfor-
mations that are not reductions are not useful on their own
- they can only have value when followed by transforma-
tions from some other class. This class of transformations
is thus more speculative than reductions, and more costly to
consider - cf. (Ols95).

• Abstraction - given an expression E containing non-
overlapping subexpressions E1, E2, . . . EN , let E′ be E

4A do(arg1, arg2, . . . argN) statement (known as progn in
Lisp), which evaluates its arguments sequentially regardless of
success or failure, is equivalent to andseq(orseq(arg1, success),
orseq(arg2, success), . . . orseq(argN , success)).

with all Ei replaced by the unbound variables vi. Define
the function f(v1, v2, . . . v3) = E′, and replace E with
f(E1, E2, . . . EN). Abstraction is distinct from compres-
sive abstraction because only a single call to the new func-
tion f is introduced.5

• Inverse abstraction - replace a call to a user-defined
function with the body of the function, with arguments
instantiated (note that this can also be used to partially
invert a compressive abstraction).

• Distribution - let E be a call to some function f , and let
E′ be a subexpression of E’s ith argument that is a call
to some function g, such that f is distributive over g’s ar-
guments, or a subset thereof. We shall refer to the actual
arguments to g in these positions in E′ as x1, x2, . . . xn.
Now, let D(F) by the function that is obtained by eval-
uating E with its ith argument (the one containing E′)
replaced with the expression F . Distribution is replacing
E with E′, and then replacing each xj (1 ≤ j ≤ n) with
D(xj). For example, consider

plus(x, times(y, ifThenElse(cond,
a, b))) .

Since both plus and times are distributive over the result
branches of ifThenElse, there are two possible distribu-
tion transformations, giving the expressions

ifThenElse(cond,
plus(x, times(y, a)),
plus(x, times(y, b))),

plus(x (ifThenElse(cond,
times(y, a),
times(y, b)))) .

• Inverse distribution - the opposite of distribution. This
is nearly a reduction; the exceptions are expressions such
as f(g(x)), where f and g are mutually distributive.

• Arity broadening - given a function f , modify it to take
an additional argument of some type. All calls to f must
be correspondingly broadened to pass it an additional ar-
gument of the appropriate type.

• List broadening6 - given a function f with some ith ar-
gument x of type T , modify f to instead take an argument
y of type listT , which gets split into x : xs. All calls to f
with ith argument x′ must be replaced by corresponding
calls with ith argument list(x′).

• Conditional insertion - an expression x is replaced by
ifThenElse(true, x, y), where y is some expression of the
same type of x.

As a technical note, action result expressions (which
may cause side-effects) complicate neutral transformations.
Specifically, abstractions and compressive abstractions must
take their arguments lazily (i.e. not evaluate them before
the function call itself is evaluated), in order to be neutral.
Furthermore, distribution and inverse distribution may only
be applied when f has no side-effects that will vary (e.g.

5In compressive abstraction there must be at least two calls in
order to avoid increasing the number of symbols.

6Analogous tuple-broadening transformations may be defined
as well, but are omitted for brevity.

be duplicated or halved) in the new expression, or affect
the nested computation (e.g. change the result of a condi-
tional). Another way to think about this issue is to consider
the action result type as a lazy domain-specific language em-
bedded within a pure functional language (where evaluation
order is unspecified). Spector has performed an empirical
study of the tradeoffs in lazy vs. eager function abstraction
for program evolution (Spe96).

The number of neutral transformation applicable to any
given program grows quickly with program size.7 Further-
more, synthesis of complex programs and abstractions does
not seem to be possible without them. Thus, a key hypoth-
esis of any approach to AGI requiring significant program
synthesis, without assuming the currently infeasible com-
putational capacities required to brute-force the problem, is
that the inductive bias to select promising neutral transfor-
mations can be learned and/or programmed. Referring back
to the initial discussion of what constitutes a tractable rep-
resentation, we speculate that perhaps, whereas well-chosen
reductions are valuable for generically increasing program
representation tractability, well-chosen neutral transforma-
tions will be valuable for increasing program representation
tractability relative to distributions P to which the transfor-
mations have some (possibly subtle) relationship.

Non-Neutral Transformations Non-neutral transforma-
tions may encompass the general class defined by removal,
replacement, and insertion of subexpressions, acting on ex-
pressions in normal form, and preserving the normal form
property. Clearly these transformations are sufficient to con-
vert any normal form expression into any other. What is
desired is a subset of these transformations that is combi-
natorially complete, where each individual transformation is
nonetheless a semantically small step.

The full set of transformations for Boolean expressions
is given in (Loo06). For numerical expressions, the tran-
scendental functions sin, log, and ex are used to construct
transformations. These obviate the need for division (a/b =
elog(a)−log(b)), and subtraction (a − b = a + −1 ∗ b). For
lists, transformations are based on insertion of new leaves
(e.g. to append function calls), and “deepening” of the nor-
mal form by insertion of subclauses; see (Loo06) for de-
tails. For tuples, we take the union of the transformations of
all the subtypes. For other mixed-type expressions the union
of the non-neutral transformations for all types must be con-
sidered as well. For enum types the only transformation is
replacing one symbol with another. For function types, the
transformations are based on function composition. For ac-
tion result types, actions are inserted/removed/altered, akin
to the treatment of Boolean literals for the Boolean type.

We propose an additional set of non-neutral transforma-
tions based on the marvelous fold function:

fold(f, v, l) =
ifThenElse(empty(l), v,

f(first(l), fold(f, v, rest(l)))) .

With fold we can express a wide variety of iterative con-

7Exact calculations are given by Olsson (Ols95).

structs, with guaranteed termination and a bias towards low
computational complexity. In fact, fold allows us to repre-
sent exactly the primitive recursive functions (Hut99).

Even considering only this reduced space of possible
transformations, in many cases there are still too many pos-
sible programs “nearby” some target to effectively consider
all of them. For example, many probabilistic model-building
algorithms, such as learning the structure of a Bayesian net-
work from data, can require time cubic in the number of vari-
ables (in this context each independent non-neutral transfor-
mation can correspond to a variable). Especially as the size
of the programs we wish to learn grows, and as the number
of typologically matching functions increases, there will be
simply too many variables to consider each one intensively,
let alone apply a cubic-time algorithm.

To alleviate this scaling difficulty, we propose three tech-
niques. The first is to consider each potential variable (i.e.
independent non-neutral transformation) to heuristically de-
termine its usefulness in expressing constructive semantic
variation. For example, a Boolean transformation that col-
lapses the overall expression into a tautology is assumed to
be useless.8 The second is heuristic coupling rules that allow
us to calculate, for a pair of transformations, the expected
utility of applying them in conjunction. Finally, while fold
is powerful, it may need to be augmented by other meth-
ods in order to provide tractable representation of complex
programs that would normally be written using numerous
variables with diverse scopes. One approach that we have
explored involves application of Sinot’s ideas about direc-
tor strings as combinators (SMI03). In this approach, spe-
cial program tree nodes are labeled with director strings,
and special algebraic operators interrelate these strings. One
then achieves the representational efficiency of local vari-
ables with diverse scopes, without needing to do any actual
variable management. Reductions and (non-)neutral trans-
formation rules related to broadening and reducing variable
scope may then be defined using the director string algebra.

Conclusions
In this paper, we have articulated general conceptual require-
ments that should be fulfilled by a program representation
scheme if it is to be considered tractable, either generically
or with respect to particular probabilistic assumptions about
the environments and tasks on which programs will be eval-
uated. With the intention of addressing these requirements,
the system of normal forms begun in (Loo06) has been ex-
tended to encompass a full programming language. An ex-
tended taxonomy of programmatic transformations has been
proposed to aid in learning and reasoning about programs.

In the future, we will experimentally validate that these
normal forms and heuristic transformations do in fact in-
crease the syntactic-semantic correlation in program spaces,
as has been shown so far only in the Boolean case. We
would also like to explore the extent to which even stronger
correlation, and additional tractability properties, can be ob-
served when realistic probabilistic constraints on “natural”

8This is heuristic because such a transformation might be useful
together with other transformations.

environments and task spaces are imposed. Finally, we in-
tend to incorporate these normal forms and transformations
into a program evolution system, such as meta-optimizing
semantic evolutionary search (Loo07a), and apply them as
constraints on probabilistic inference on programs.

References
E. B. Baum. What is Thought? MIT Press, 2004.
E. B. Baum. A working hypothesis for general intelligence.
In Advances in Artificial General Intelligence: Concepts,
Architectures and Algorithms, 2006.
S. Gustafson, E. K. Burke, and G. Kendall. Sampling of
unique structures and behaviours in genetic programming.
In European Conference on Genetic Programming, 2004.
G. Hutton. A tutorial on the universality and expressiveness
of fold. Journal of Functional Programming, 1999.
M. Hutter. Universal algorithmic intelligence: A mathe-
matical top-down approach. In B. Goertzel and C. Pen-
nachin, editors, Artificial General Intelligence. Springer-
Verlag, 2005.
L. Levin. Randomness and nondeterminism. In The Inter-
national Congress of Mathematicians, 1994.
M. Looks, B. Goertzel, and C. Pennachin. Novamente: An
integrative architecture for artificial general intelligence. In
AAAI Fall Symposium Series, 2004.
M. Looks. Competent Program Evolution. PhD thesis,
Washington University in St. Louis, 2006.
M. Looks. Meta-optimizing semantic evolutionary search.
In Genetic and evolutionary computation conference,
2007.
M. Looks. On the behavioral diversity of random pro-
grams. In Genetic and evolutionary computation confer-
ence, 2007.
M. Looks. Scalable estimation-of-distribution program
evolution. In Genetic and evolutionary computation con-
ference, 2007.
W. B. Langdon and R. Poli. Foundations of Genetic Pro-
gramming. Springer-Verlag, 2002.
J. R. Olsson. Inductive functional programming using in-
cremental program transformation. Artificial Intelligence,
1995.
F. R. Sinot, Fernández M., and Mackie I. Efficient reduc-
tions with director strings. In Rewriting Techniques and
Applications, 2003.
R. Solomonoff. A formal theory of inductive inference.
Information and Control, 1964.
L. Spector. Simultaneous evolution of programs and their
control structures. In Advances in Genetic Programming 2.
MIT Press, 1996.
M. Tomassini, L. Vanneschi, P. Collard, and M. Clergue. A
study of fitness distance correlation as a difficulty measure
in genetic programming. Evolutionary Computation, 2005.
P. Wang. Rigid Flexibility: The Logic of Intelligence.
Springer, 2006.

