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Abstract

Systems for general intelligence require a significant poten-
tial to model a variety of different cognitive abilities. It is
often claimed that logic-based systems – although rather suc-
cessful for modeling specialized tasks – lack the ability to
be useful as a universal modeling framework due to the fact
that particular logics can often be used only for special pur-
poses (and do not cover the whole breadth of reasoning abili-
ties) and show significant weaknesses for tasks like learning,
pattern matching, or controlling behavior. This paper argues
against this thesis by exemplifying that logic-based frame-
works can be used to integrate different reasoning types and
can function as a coding scheme for the integration of sym-
bolic and subsymbolic approaches. In particular, AGI sys-
tems can be based on logic frameworks.

Introduction
As a matter of fact artificial intelligence currently departs
significantly from its origins. The first decades of AI can
be characterized as the attempt to use mostly logic-based
methods for the development of frameworks and implemen-
tations of higher cognitive abilities. A few prominent exam-
ples are knowledge representation formalisms like Minsky’s
frames (Minsky, 1975), semantic networks (Sowa, 1987),
McCarthy’s situation calculus (McCarthy, 1963), Brach-
nan’s KL-ONE (Brachman and Schmolze, 1985). With the
rise and partial success of neurosciences, neuroinformatics,
dynamic system theory, and other nature-inspired comput-
ing paradigms, logic-based frameworks seem to lose their
importance in artificial intelligence. The current success
of these new methodologies are at least partially based on
the fact that several non-trivial problems are connected with
logic-based approaches. Examples of such problems are
the profusion of knowledge, the variety of reasoning for-
malisms, the problem of noisy data, and the lack of cog-
nitive plausibility with respect to learning from sparse data,
or reasoning in non-tractable domains.

A number of new research paradigms were proposed in
order to overcome some limitations of logical computational
frameworks. Many of them are inspired by biological or
psychological findings. The following list summarizes some
of these new methodologies:

• Natural Computation: This cluster contains methods like
learning with neural networks and support vector ma-

chines, evolutionary computing, genetic algorithms, dy-
namic system theory etc.

• Cognitive Robotics: Embedded and embodied models of
agents focus on perception aspects, motor control, and the
idea that the world itself is the best of all possible mod-
els. This tradition moves the interest from higher to lower
cognitive abilities.

• Cognitive Architectures: Integrated frameworks for mod-
eling cognitive abilities, often use many different method-
ologies in order to model cognitive abilities. There seems
to be a tendency for a method pluralism including also
ideas from natural computation.

• Further Approaches: Further approaches for AI sys-
tems are, for example, fuzzy and probabilistic approaches
(sometimes combined with logic), semantic networks that
are enriched with activation potentials, the modeling of
social aspects in multi-agent networks etc.

The mentioned methodologies are usually considered as
alternatives to specialized logic-based AI systems. Although
methods of, for example, natural computation may have
strengths in particular domains, it is clearly far from being
obvious that they can be used for modeling higher cogni-
tive abilities. In particular, for AGI systems, which attempt
to model the whole spectrum of higher and lower cogni-
tive abilities, the difficulty to find a basis for its underlying
methodology seems to be crucial: due to the fact that there
are no good ideas how logical frameworks can be translated
into such new computational paradigms, a starting point for
AGI is the clarification of its methodological basis.

This paper argues for the usage of a non-standard logic-
based framework in order to model different types of reason-
ing and learning in a uniform framework as well as the inte-
gration of symbolic and subsymbolic approaches. Analogi-
cal reasoning has the potential for an integration of a variety
of reasoning formalisms and neural-symbolic integration is
a promising research endeavor to allow the learning of log-
ical knowledge with neural networks. The remainder of the
paper has the following structure: first, we will discuss the
variety of logic and learning formalisms. Second, we will
show possible steps towards a logic-based theory that com-
prises different types of reasoning and learning. Third, we
will argue for using logic as the lingua franca for AGI sys-
tems based on neural-symbolic integration.



Types of Reasoning Corresponding Formalisms
Deductions Classical Logic

Inductions Inductive Logic Programming

Abductions Extensions of Logic Programming

Analogical Reasoning SME, LISA, AMBR, HDTP

Similarity-Based Reasoning Case-Based Reasoning

Non-Monotonic Reasoning Answer Set Programming

Frequency-Based Reasoning Bayesian Reasoning

Vague and Uncertain Rasoning Fuzzy, Probabilistic Logic

Reasoning in Ontologies Description Logics

Etc. Etc.

Table 1: Some types of reasoning and some formalisms

Tensions in Using Logic in AGI Systems
The Variety of Reasoning Types
Logical approaches have been successfully applied to ap-
plications like planning, theorem proving, knowledge rep-
resentation, problem solving, and inductive learning, just to
mention some of them. Nevertheless, it is remarkable that
for particular domains and applications very special logi-
cal theories were proposed. These theories cannot be sim-
ply integrated into one uniform framework. Table 1 gives
an overview of some important types of reasoning and their
corresponding logic formalisms. Although such formalisms
can be applied to a variety of different domains, it turns out
that the degree of their generalization potential is limited.
One will hardly find an approach that integrates inductive,
deductive, abductive, fuzzy etc. logic theories in one unified
framework.1

The Variety of Learning Types
A very similar situation can be found by shifting our atten-
tion from reasoning issues to learning aspects. The mani-
fold of learning paradigms used in applications leads to the
development of various corresponding formalisms. Major
distinctions of learning approaches like supervised, unsuper-
vised, and reinforcement learning structure the field, but are
themselves just labels for a whole bunch of learning algo-
rithms. Table 2 summarizes some important learning tech-
niques commonly used in AI.

Although the list of machine learning algorithms guaran-
tees that efficient learning strategies do exist for many ap-
plications, several non-trivial problems are connected with
these theories. The following list summarizes some of them:

• Learning from noisy data is a classical problem for sym-
bolic learning theories. Neural-inspired machine learning
mechanisms have certain advantages in this respect.

• There is no learning paradigm that convincingly can learn
from sparse, but highly conceptualized data. Whereas
natural agents are able to generate inductive hypothe-
ses based on a few data points due to the availability of

1Clearly, there are exceptions: an example may be Wang’s
NARS architecture (Wang, 2006) where the integration of the
whole range of higher cognitive abilities are programmatically
modeled in a logic-based framework.

Learning Types Learning Approaches
Unsupervised Clustering Neural Networks, SOMs,

Learning ART, RBF network

Supervised Classification, Case-based reasoning,

Learning Learning a Function k-Nearest Neighbor,

Decision Tree Learning

Reinforcement Policy Learning Q-Learning, POMDPs,

Learning Temporal Difference Learning

Analytical & Inductive Rule Extraction, Inductive Learing,

Learning Learning in Domain Explanation-Based Learning,

Theories KBANNs

Table 2: Some types of learning and some methodological
learning approaches

background knowledge, classical machine learning mech-
anisms usually need rather large numbers of (more or less)
unconceptualized examples.

• Learning in artificial systems is quite often realized ex-
plicitly in a separate module especially designed for a
particular task. Contrary to this idea, cognitive learning
is usually a continuous adaptation process taking place on
many levels: besides explicit learning, rearranging rep-
resentations in order to align structural properties of two
inputs in a complex reasoning process, resolving clashes
in a conceptualization by rewriting the representation, im-
plicitly erasing features of an entity to make it compatible
with background knowledge etc. may play an important
role for adaptation processes (Kühnberger et al., 2008).

• The gap between symbolic and subsymbolic representa-
tions is a problem for AI systems because of complemen-
tary strengths and weaknesses. A framework that can ex-
tract the strengths of both fields would be desirable.

Steps Towards a Logic-Based Theory for
Reasoning and Learning

Sketch of HDTP
A framework that proposes to integrate different reasoning
types in one framework is heuristic-driven theory projec-
tion (HDTP) described in (Gust, Kühnberger, and Schmid,
2006). HDTP has been proposed for analogical reasoning.
Due to the fact that establishing an analogical relation be-
tween a given source and target domain often requires the
combination of different reasoning types, analogical reason-
ing is a natural starting point for an integration methodology
for AGI systems.

We sketch the basic ideas of HDTP in this subsection.2
HDTP established an analogical relation between a source
theory ThS and target theory ThT (both described in a first-
order language L) by computing a generalization (structural
description) ThG of the given theories. This generalization
process is based on the theory of anti-unification (Plotkin,

2For a comprehensive presentation of the theory, the reader is
referred to (Gust, Kühnberger, and Schmid, 2006) and (Schwering
et al., 2009).



Solar System Rutherford Atom
α1 : mass(sun) > mass(planet)
α2 : ∀t : distance(sun, planet, t) > 0

α3 : gravity(sun, planet) > 0

α4 : ∀x∀y : gravity(x, y) > 0

→ attracts(x, y)
α5 : ∀x∀y∀t : attracts(x, y) ∧

distance(x, y, t) > 0 ∧
mass(x) > mass(y)

→ revolves arround(y, x)

β1 : mass(nucleus) > mass(electron)
β2 : ∀t : distance(nucleus, electron, t) > 0

β3 : coulomb(nucleus, electron) > 0

β4 : ∀x∀y : coulomb(x, y) > 0

→ attracts(x, y)

Generalized Theory
γ1 : mass(A) > mass(B)

γ2 : ∀t : distance(A,B, t) > 0

γ3 : F (A,B) > 0

γ4 : ∀x∀y : F (x, y) > 0→ attracts(x, y)

Table 3: A formalization of the Rutherford analogy with obvious analogous structures (Krumnack et al., 2008)

1970). Anti-unification is the dual constructions of unifica-
tion: if input terms t1 and t2 are given, the output is a gener-
alized term t such that for substitutions Θ1 and Θ2 it holds:
t1 = tΘ1 and t2 = tΘ2. It is well-known that for first-order
anti-unification a generalization always exists, there are at
most finitely many generalizations, and there exists a unique
least generalization (Plotkin, 1970).

In order to apply the idea of anti-unification to analogies,
it is necessary to extend the anti-unification framework in
several respects. We will use the Rutherford analogy formal-
ized in Table 3 as a simple example for motivating HDTP:

1. Not only terms but also formulas (theories) need to be
anti-unified.

2. Whereas the generalization of α1 and β1 to γ1 uses only
first-order variables, the anti-unification of α3 and β3

requires the introduction of second-order variables (Ta-
ble 3).

3. In order to productively generate the conclusion that elec-
trons revolve around the nucleus, it is necessary to project
α5 to the source domain and generate a formula γ5 in
ThG with

∃A∃B∀t : attracts(A,B) ∧ distance(A,B, t) > 0 ∧
mass(A) > mass(B)→ revolves arround(B,A)

In the following, we mention some properties of the ex-
tensions mentioned in the above list. The generalization of
term anti-unification to the anti-unification of formulas is
rather straightforward and will be omitted here.3 A crucial
point is the fact that not only first-order but also second-
order generalizations need to computed, corresponding to
the introduction of second-order variables. If two terms
t1 = f(a, b) and t2 = g(a, b) are given, a natural second-
order generalization would be F (a, b) (where F is a func-
tion variable) with substitutions Θ1 = {F ← f} and
Θ2 = {F ← g}. Then: t1 = f(a, b) = F (a, b)Θ1

and t2 = g(a, b) = F (a, b)Θ2. It is known that unre-
stricted second-order anti-unifications can lead to infinitely
many anti-instances (Hasker, 1995). In (Krumnack et al.,

3Cf. (Krumnack et al., 2008) for more information.

2007), it is shown that a restricted form of higher-order anti-
unification resolves this computability problem and is ap-
propriate for analogy making.
Definition 1 Restricted higher-order anti-unification is
based on the following set of basic substitutions (Vn denotes
an infinite set of variables of arity n ∈ N):

• A renaming ρF,F
′

replaces a variable F ∈ Vn by another
variable F ′ ∈ Vn of the same argument structure:

F (t1, . . . , tn)
ρF,F

′

−−−→ F ′(t1, . . . , tn).
• A fixation φVc replaces a variable F ∈ Vn by a function

symbol f ∈ Cn of the same argument structure:

F (t1, . . . , tn)
φFf−−→ f(t1, . . . , tn).

• An argument insertion ιF,F
′

V,i with 0 ≤ i ≤ n, F ∈ Vn,
G ∈ Vk with k ≤ n− i, and F ′ ∈ Vn−k+1 is defined by

F (t1, . . . , tn)
ιF,F

′
V,i−−−→

F ′(t1, . . . , ti−1, G(ti, . . . , ti+k−1), ti+k, . . . , tn).

• A permutation πF,F
′

α with F, F ′ ∈ Vn and bijective α :
{1, . . . , n} → {1, . . . , n} rearranges the arguments of a
term:

F (t1, . . . , tn)
πF,F

′
α−−−→ F ′(tα(1), . . . , tα(n)).

As basic substitutions one can rename a second-variable,
instantiate a variable, insert an argument, or permute argu-
ments. Finite compositions of these basic substitutions are
allowed. It can be shown that every first-order substitu-
tion can be coded with restricted higher-order substitution
and that there are at most finitely many anti-instances in the
higher-order case (Krumnack et al., 2007).

A last point concerns the transfer of knowledge from the
source to the target domain. In the Rutherford example, this
is the projection of α5 to the target domain governed by the
analogical relation computed so far. Such projections allow
to creatively introduce new concepts on the target side. The
importance of these transfers for modeling creativity and
productivity cannot be overestimated.



Integrating Different Types of Reasoning and
Learning with HDTP
As should be already clear from the rough introduction to
HDTP, analogy making involves several types of reasoning.
Not only that the result of the process is the establishment of
an analogical relation between ThS and ThT , but as a side-
effect a generalization is computed that can be interpreted as
a learning result: the generalized theory ThG together with
appropriate substitutions cover not only the input theories,
but potentially also some further theories. With respect to
the Rutherford analogy the result is a central body system.
Therefore, already at the level of the core theory, a form of
inductive inference is computed.4

Another type of inference is involved in cases where the
domain theories ThS and ThT are not in a form such that
an association of corresponding terms and formulas is pos-
sible, although the theories can be analogically associated
with each other. Assume that β2 in Table 3 is replaced by

β′2 : ∀t : distance(electron, nucleus, t) > 0.
A simple association of α2 and β′2 is no longer possible,
because the argument positions do not coincide. In order to
resolve this problem, HDTP uses a theorem prover to rewrite
the axioms and deduce a representation that is more appro-
priate for analogy making. In our example, such a piece of
background knowledge may be the formula

∀x∀y∀t : distance(x, y, t) = distance(y, x, t)
Because the system is based on a first-order logical in-

put, and for every first-order theory there are infinitely many
possible axiomatizations, such cases may occur often. In
(Krumnack et al., 2008), an algorithm is presented that
shows how such a re-representation of a theory can be im-
plemented into the HDTP core framework.

The remarks so far make clear that HDTP already covers
different types of reasoning:

• Analogical inferences are used to establish the analogical
relation between source and target.

• Anti-unification computes generalizations that can be in-
terpreted as general hypotheses about the structure of the
instance theories.

• Deductive inferences are used to rewrite the input for ap-
plicability of anti-unification.

• Vague reasoning is implicitly covered by the approach,
because analogies are intrinsically fuzzy. There are no
right or wrong analogies, rather there are psychologically
preferred and psychologically less preferred analogies.
HDTP models this aspect by using heuristics.

In alternative analogy models other types of reasoning
were proposed for the integration into the analogy mak-
ing process. As an example abductive reasoning is men-
tioned that can be modeled in the structure mapping engine
(Falkenhainer, Forbus, and Gentner, 1989).

4The generalization has similarities to an induction step. Nev-
ertheless, it is important to notice that anti-unification is governed
by two structured theories and not by many examples like in the
case of classical inductive reasoning.

Figure 1: A graphical representation of the analogy making
process involving different forms of reasoning and learning

Remarks on Learning with HDTP
As mentioned above not only the variety of different types of
reasoning, but also the variety of different types of learning
jeopardize the integration of learning into an AGI method-
ology, as well as learning from sparse and noisy data. The
analogy making process presented here gives us some hints
for possible solutions of some of these problems. First, no-
tice that analogies do not require many data points. In fact,
the input is given by just two theories (in the regular case).
This suffices to learn a new conceptualization of the tar-
get and to find a generalization of both, source and target.
Second, in (Kühnberger et al., 2008) the authors argue that
learning from inconsistencies can be seen as a basic prin-
ciple for adaptation processes in the cognitive architecture
I-Cog: clashes occurring in reasoning, learning, or repre-
sentation processes can trigger adaptation procedures that
resolve such clashes. HDTP can be interpreted as one exam-
ple where such adaptation processes can be specified on the
algorithmic level of establishing analogies.

We explain some further issues in the analogy making
process with respect to learning using Figure 1.

1. Level: The source and the target domain are compared
via analogy to identify common structures between the
domains. The commonalities are generalized to a theory
ThG . The analogy making process can transfer knowl-
edge from the source to the target yielding a new concep-
tualization of the target. This results in a learning effect
on the target side.

2. Level: The formulas projected from the source to the
target need to be tested, because the analogical knowl-
edge transfer might be true only for prototypical situa-
tions. The process runs through a number of different re-
finement steps and yields a parameter setting specifying
in which range an analogy holds.

3. Level: The aim of this level is the identification of gen-
eral principles. This type of learning requires the compar-
ison (typically analogical comparison) of many different
domain theories. At this level, the learning process starts
with an intuitive hypothesis about a general principle and
compares this iteratively with other domains to gain more
confidence.



Symbolic Approaches Subsymbolic Approaches
Methods (Mostly) logical and/or (Mostly) analytic

algebraic

Strengths Productivity, Recursion Robustness, Learning,
Principle, Compositionality Parsimony, Adaptivity

Weaknesses Consistency Constraints, Opaqueness
Lower Cognitive Abilities Higher Cognitive Abilities

Applications Reasoning, Problem Learning, Motor Control,
Solving, Planning etc. Vision etc.

CogSci Relation Not Biologically Inspired Biologically Inspired

Other Features Crisp Fuzzy

Table 4: Differences between symbolic and subsymbolic
theories

The three levels proposed above outline the different
mechanisms that occur. Analogical learning in this sense
is therefore a process in which different learning mecha-
nisms interact and are iteratively repeated to refine and cor-
rect knowledge on the various abstraction levels.5

Logic as Lingua Franca for AGI Systems
In this section, we sketch ideas of how logic as the under-
lying representation formalism can be used for integrating
subsymbolic devices to a logical reasoning system.

Building Neural-Symbolic Learning Systems
There is an obvious gap between symbolic and subsymbolic
theories. As a matter of fact there is not only a methodolog-
ical difference between these approaches, but furthermore
strengths and weaknesses of the two paradigms are comple-
mentary distributed. Table 4 mentions some important dis-
tinctions between these two types of modeling options. In
particular, for an AGI system intended to cover a large part
of the breadth of cognitive abilities, a natural idea would be
to bring these two research traditions together.

There has been the research endeavor “neural-symbolic
integration” attempting to resolve this tension between sym-
bolic and subsymbolic approaches.6 The idea is to transform
a highly structured input (e.g. a logical theory) into a flat in-
put appropriate for connectionist learning. It has been shown
that learning theories of propositional logic with neural net-
works can be achieved by using different frameworks like
the “core method” or KBANNs (Hölldobler and Kalinke,
1994; Towell and Shavlik, 1994). In recent years, exten-
sions to predicate logic were proposed (Bader, Hitzler, and
Hölldobler, 2008).

We sketch some ideas of learning predicate logic with
neural networks based on topos theory (Gust, Kühnberger,
and Geibel, 2007). First, we introduce some concepts. A
topos T is a category where all finite diagrams have limits
(and colimits), any two objects have an exponential object,

5This distinguishes HDTP from other learning approaches
based on analogy. For example, the SME tradition (Falkenhainer,
Forbus, and Gentner, 1989) focuses on alignment and transfer,
whereas abstraction and interactions of different mechanisms do
not play a crucial role.

6A good overview of neural-symbolic integration can be found
in (Hammer and Hitzler, 2007).

and there exists a subobject classifier (Goldblatt, 1984). As
a consequence, T has an initial and terminal object, as well
as finite products and coproducts. The prototypical example
for a topos is the category SET . The objects of SET are
sets, connected by set theoretic functions (called arrows). A
product a × b can be identified with the well-known Carte-
sian product of two sets a and b, and an exponent ab with
the set of functions f : b → a. The terminal object ! is the
one-element set {0}with the property that for all sets a there
is exactly one arrow from a into {0}. The truth value object
Ω = {0, 1} and the subobject classifier true: ! → Ω map-
ping 0 to 1 generalizes characteristic functions and therefore
interpretations of predicates.

We summarize how a topos can be used for neural learn-
ing of a logical theory T given in a first–order language L.

• T is translated into a variable-free representation in a
topos T . The result is a representation of logic expres-
sions by commuting diagrams, where objects are sets and
arrows are set theoretic functions (in case we work in
SET ). Logical terms can be interpreted as mappings from
the terminal object into the universe U and logical 2-ary
connectives as mappings Ω× Ω→ Ω. Quantified formu-
las correspond to an operation mapping (complex) predi-
cates to (complex) predicates.

• An algorithm is generating equations of the form f◦g = h
and inequations of the form f 6= g corresponding to equa-
tions and inequations of arrows in the T , i.e. set theoretic
functions in SET .

• As representations for objects and arrows it is possible
to choose vectors of the vector space Rn. The resulting
equations and inequations can be used in order to train a
feedforward neural network by backpropagation.

• The network learns a representation of objects and ar-
rows of the underlying topos (which themselves represent
symbols and expressions of L), such that the truth condi-
tions of the underlying axioms of T are satisfied. In other
words, the network learns a model of T .

Although the approach still has many problems to solve,
the very possibility to code axioms of a logical theory T ,
such that a neural network can learn a model of T , can
be considered as the missing link between symbolic and
subsymbolic representations. Applied to AGI systems, this
means that logic can play the role of a lingua franca for gen-
eral intelligence, without neglecting one of the two separated
worlds of symbolic and subsymbolic computations. Rather
it is possible to integrate both worlds into one architecture.
A proposal for such an architecture (I-Cog) integrating both
devices – the analogy engine and the neural-symbolic inte-
gration device – can be found in (Kühnberger et al., 2008).

Related Work
Analogies have been playing an important role in cognitive
science and cognitively inspired AI for a long time. Clas-
sical frameworks are, for example, the symbolic approach
SME (Falkenhainer, Forbus, and Gentner, 1989), the con-
nectionist system LISA (Hummel and Holyoak, 1997), or
the hybrid approach AMBR (Kokinov and Petrov, 2001). A



good overview of analogy models can be found in (Gen-
tner, Holyoak, and Kokinov, 2001). There are numerous
classical papers on neural-symbolic integration, e.g. (Barn-
den, 1989) as one of the early ones. More recent work is
concerned with extensions of propositional logic (D’Avila
Garcez, Broda, and Gabbay, 2002), and the modeling of
predicate logic using the “core method” (Bader, Hitzler, and
Hölldobler, 2008).

Conclusions
This paper argues for the usage of logic as the basis for
an AGI system without neglecting other nature-inspired ap-
proaches for modeling intelligent behavior. Although there
is a zoo of logical formalisms that are sometimes hard to
integrate with each other, we claim that directions towards
such an integration of a variety of different reasoning types
already exist. As an example we proposed the analogy en-
gine HDTP in order to integrate such diverse types of rea-
soning like analogical, deductive, inductive, and vague rea-
soning. Furthermore, non-trivial learning mechanisms can
be detected by adapting and fine-tuning the analogical re-
lation. Finally, this paper claims that even the interaction
between symbolic theories and subsymbolic theories can be
achieved by the usage of techniques developed in neural-
symbolic integration.

Obviously, many issues remain open. Besides the chal-
lenge of an empirical justification of the presented frame-
work, other issues for future work need to be addressed.
Currently it is impossible to solve challenging problems
(e.g. benchmark problems) for theorem provers with neural-
symbolic integration. Similarly, many questions of analogy
making remain open and are not solved yet. One example
is the integration of large knowledge bases, in particular, the
retrieval of relevant knowledge, another one is the scalabil-
ity of analogy making to applications in the large. Never-
theless, taking these ideas together it turns out that a variety
of different cognitive abilities can be addressed in a uniform
framework using logic as a mediating tool.
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