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Abstract 
A novel method for simultaneously storing memories and 
allocating resources in AI systems is presented.  The 
method, Economic Attention Networks (ECANs), bears 
some resemblance to the spread of activation in attractor 
neural networks, but differs via explicitly differentiating two 
kinds of “activation” (Short Term Importance, related to 
processor allocation; and Long Term Importance, related to 
memory allocation), and in using equations that are based 
on ideas from economics rather than approximative neural 
modeling.  Here we explain the basic ideas of ECANs, and 
then investigate the functionality of ECANs as associative 
memories, via mathematical analysis and the reportage of 
experimental results obtained from the implementation of 
ECANs in the OpenCog integrative  AGI system. 

Introduction 
One of the critical challenges confronting any system 
aimed at advanced general intelligence is the allocation of 
computational resources.  The central nature of this issue is 
highlighted by Hutter’s (2004) mathematical results 
showing that if one formalizes intelligence as the 
achievement of complex computable goals, then there are 
very simple software programs that can achieve arbitrarily 
high degrees of intelligence, so long as they are allotted 
huge amounts of computational resources.  In this sense, 
coping with space and time limitations is the crux of the 
AGI problem.   
 Not surprisingly, given its central nature, the 
management of computational resources ties in with a 
variety of other concrete issues that AGI systems confront, 
in ways depending on the specific system in question.  In 
the approach we will describe here, resource allocation is 
carried out by the same structures and dynamics as 
associative memory, whereas the relationship between 
resource allocation and other system processes like 
reasoning and procedure learning involves feedback 
between distinct software components. 
 We will describe here a specific approach to resource 
allocation and associative memory, which we call 

Economic Attention Networks or ECANs.  ECANs have 
been designed and implemented within an integrative AGI 
framework called OpenCog (which overlaps with the 
related Novamente Cognition Engine system; see Goertzel, 
2006).  However, ECANs also have meaning outside the 
OpenCog context; they may be considered nonlinear 
dynamical systems in roughly the same family as attractor 
neural networks such as Hopfield nets (Amit, 1992).  The 
main focus of this paper is the study of ECANs as 
associative memories, which involves mathematical and 
experimental analyses that are independent of the 
embedding of ECANs in OpenCog or other AGI systems.  
But we will also discuss the implications of these results 
for specific interactions between ECANs and other 
OpenCog components 

Economic Attention Networks 
First we summarize the essential ideas of ECANs; in later 
sections two specific variants of ECAN equational 
formalizations are presented. 
 An ECAN is a graph, consisting of un-typed nodes and 
links, and also links that may be typed either HebbianLink 
or InverseHebbianLink.   It is also useful sometimes to 
consider ECANs that extend the traditional graph 
formalism and involve links that point to links as well as to 
nodes.  The term Atom will be used to refer to either nodes 
or links.  Each Atom in an ECAN is weighted with two 
numbers, called STI (short-term importance) and LTI 
(long-term importance).  Each Hebbian or InverseHebbian 
link is weighted with a probability value. 
 The equations of an ECAN explain how the STI, LTI 
and Hebbian probability values get updated over time.  The 
metaphor underlying these equations is the interpretation 
of STI and LTI values as (separate) artificial currencies.  
The motivation for this metaphor has been elaborated 
somewhat in (Goertzel, 2007) and will not be recapitulated 
here.  The fact that STI (for instance) is a currency means 
that the total amount of STI in the system is conserved 
(except in unusual instances where the ECAN controller 



decides to introduce inflation or deflation and explicitly  
manipulate the amount of currency in circulation), a fact 
that makes the dynamics of an ECAN dramatically 
different than that of, say, an attractor neural network (in 
which there is no law of conservation of activation).   
 Conceptually, the STI value of an Atom is interpreted to 
indicate the immediate urgency of the Atom to the ECAN 
at a certain point in time; whereas the LTI value of an 
Atom indicates the amount of value the ECAN perceives in 
the retention of the Atom in memory (RAM).  An ECAN 
will often be coupled with a “Forgetting” process that 
removes low-LTI Atoms from memory according to 
certain heuristics.   
 STI and LTI values will generally vary continuously, but 
the ECAN equations we introduce below contain the 
notion of an AttentionalFocus (AF), consisting of those 
Atoms in the ECAN with the highest STI values.  The AF 
is given its meaning by the existence of equations that treat 
Atoms with STI above a certain threshold differently. 
 Conceptually, the probability value of a HebbianLink 
from A to B is the odds that if A is in the AF, so is B; and 
correspondingly, the InverseHebbianLink from A to B is 
weighted with the odds that if A is in the AF, then B is not.  
A critical aspect of the ECAN equations is that Atoms 
periodically spread their STI and LTI to other Atoms that 
connect to them via Hebbian and InverseHebbianLinks; 
this is the ECAN analogue of activation spreading in 
neural networks. 
 Based on the strong correspondences, one could 
plausibly label ECANs as “Economic Neural Networks”; 
however we have chosen not to go that path, as ECANs are 
not intended as plausible neural models, but rather as 
nonlinear dynamical systems engineered to fulfill certain 
functions within non-brain-emulative AGI systems. 

Integration into OpenCog and the NCE 
The OpenCog AGI framework, within which the current 
ECAN implementation exists, is a complex framework 
with a complex underlying theory, and here we will only 
hint at some of its key aspects.  OpenCog is an open-source 
software framework designed to support the construction 
of multiple AI systems; and the current main thrust of work 
within OpenCog is the implementation of a specific AGI 
design called OpenCogPrime (OCP), which is presented in 
the online wikibook (Goertzel, 2008).  Much of the 
OpenCog software code, and many of the ideas in the OCP 
design, have derived from the open-sourcing of aspects of 
the proprietary Novamente Cognition Engine, which has 
been described extensively in previous publications. 
 The first key entity in the OpenCog software 
architecture is the AtomTable, which is a repository for 
weighted, labeled hypergraph nodes and hyperedges.  In 
the OpenCog implementation of ECANs, the nodes and 
links involved in the ECAN are stored here.  OpenCog also 
contains an object called the CogServer, which wraps up 
an AtomTable as well as (among other objects) a 
Scheduler that schedules a set of MindAgent objects that 
each (when allocated processor time by the Scheduler) 

carry out cognitive operations involving the AtomTable.  
The essence of the OCP design consists of a specific set of 
MindAgents designed to work together in a collaborative 
way in order to create a system that carries out actions 
oriented toward achieving goals (where goals are 
represented as specific nodes in the AtomTable, and 
actions are represented as Procedure objects indexed by 
Atoms in the AtomTable, and the utility of a procedure for 
achieving a goal is represented by a certain set of 
probabilistic logical links in the AtomTable, etc.).   
OpenCog is still at an experimental stage but has been used 
for such projects as statistical language analysis, 
probabilistic inference, and the control of virtual agents in 
online virtual worlds (see opencog.org). 
 So, in an OpenCog context, ECAN consists of a set of 
Atom types, and then a set of MindAgents carrying out 
ECAN operations such as HebbianLinkUpdating and 
ImportanceUpdating.  OCP also requires many other 
MindAgents carrying out other cognitive processes such as 
probabilistic logical inference according to the PLN system 
(Goertzel et al, 2008) and evolutionary procedure learning 
according to the MOSES system (Looks, 2006).  The 
interoperation of the ECAN MindAgents with these other 
MindAgents is a subtle issue that will be briefly discussed 
in the final section of the paper, but the crux is simple to 
understand. 
 The CogServer is understood to maintain a kind of 
central bank of STI and LTI funds.  When a non-EAN 
MindAgent finds an Atom valuable, it sends that Atom a 
certain amount of Stimulus, which results in that Atom’s 
STI and LTI values being increased (via equations to be 
presented below, that transfer STI and LTI funds from the 
CogServer to the Atoms in question).  Then, the ECAN 
ImportanceUpdating MindAgent carries out multiple 
operations, including some that transfer STI and LTI funds 
from some Atoms back to the CogServer. 

Definition and Analysis of Variant 1 
 We now define a specific set of equations in accordance 
with the ECAN conceptual framework described above.  
We define 
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HSTI = s1,,sn[ ]  to be the vector of STI 

values, and 
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 to be the connection matrix of 

Hebbian probability values, where it is assumed that the 
existence of a HebbianLink or InverseHebbianLink 
between A and B are mutually exclusive possibilities. We 

also define 
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 to be the matrix of LTI 

values for each of the corresponding links. 
 We assume an updating scheme in which, periodically, a 
number of Atoms are allocated Stimulus amounts, which 



causes the corresponding STI values to change according 
to the equations 
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∀i : si = si − rent +wages , 
 

where rent and wages are given by 
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where 

  

€ 

P = p1,, pn[ ] , with 

€ 

pi ∈ 0,1{ }  is the cue 
pattern for the pattern that is to be retieved. 
All quantities enclosed in angled brackets are system 
parameters, and LTI updating is accomplished using a 
completely analogous set of equations.  
 The changing STI values then cause updating of the 
connection matrix, according to the “conjunction” 
equations. First define 
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normi =

si
recentMaxSTI

, if si ≥ 0

si
recentMinSTI

, if si < 0
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Next define 
 

€ 

conj = Conjunction si,s j( ) = normi × normj   
 

and  
 

€ 

′ c ij = ConjDecay conj+ 1− conj( )cij . 
 

Finally update the matrix elements by setting 
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cij =
c ji = ′ c ij , if  ′ c ij ≥ 0
′ c ij ,         if  ′ c ij < 0

 
 
 

. 

 
We are currently also experimenting with updating the 
connection matrix in accordance with the equations 
suggested by Storkey (1997, 1998, 1999.) 
 

 A key property of these equations is that both wages 
paid to, and rent paid by, each node are positively 
correlated to their STI values. That is, the more important 
nodes are paid more for their services, but they also pay 
more in rent.  
 A fixed percentage of the links with the lowest LTI 
values is then forgotten (which corresponds equationally to 
setting the LTI to 0).  
 Separately from the above, the process of Hebbian 
probability updating is carried out via a diffusion process 
in which some nodes “trade” STI utilizing a diffusion 
matrix D, a version of the connection matrix C normalized 
so that D is a left stochastic matrix. D acts on a similarly 
scaled vector v, normalized so that v is equivalent to a 
probability vector of STI values.   
 The decision about which nodes diffuse in each 
diffusion cycle is carried out via a decision function. We 
currently are working with two types of decision functions: 
a standard threshold function, by which nodes diffuse if 
and only if the nodes are in the AF; and a stochastic 
decision function in which nodes diffuse with probability 

€ 

tanh shape si −FocusBoundary( )( ) +1
2

, where shape and 

FocusBoundary are parameters. 
 The details of the diffusion process are as follows. First, 
construct the diffusion matrix from the entries in the 
connection matrix as follows: 
 

€ 

If cij ≥ 0, then dij = cij ,
else, set d ji = −cij .

 

 
Next, we normalize the columns of D to make D a left 
stochastic matrix. In so doing, we ensure that each node 
spreads no more that a 

€ 

MaxSpread  proportion of its STI, 
by setting 
 

€ 

if dij
i=1

n

∑ > MaxSpread : 
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dij =

dij ×
MaxSpread

dij
i=1

n

∑
,   for i ≠ j

d jj =1− MaxSpread

 

 

 
 

 

 
 

 

else: 
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d jj =1− dij
i=1
i≠ j

n
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Now we obtain a scaled STI vector v by setting 
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minSTI =
i∈ 1,2,,n{ }
min si  and maxSTI =

i∈ 1,2,,n{ }
max si 
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vi =
si −minSTI

maxSTI−minSTI
 

 



The diffusion matrix is then used to update the node STIs 
 

€ 

′ v = Dv  
 
and the STI values are rescaled to the interval 

€ 

minSTI,maxSTI[ ] .  
 In both the rent and wage stage and in the diffusion 
stage, the total STI and LTI funds of the system each 
separately form a conserved quantity: in the case of 
diffusion, the vector v is simply the total STI times a 
probability vector. To maintain overall system funds within 
homeostatic bounds, a mid-cycle tax and rent-adjustment 
can be triggered if necessary; the equations currently used 
for this are  
 

• 

€ 

Rent =
recent stimulus awarded before update× Wage

recent size of AF
; 

• 

€ 

tax = x
n

, where x is the distance from the current 

AtomSpace bounds to the center of the 
homeostatic range for AtomSpace funds; 

• 

€ 

∀i : si = si − tax  

Investigation of Convergence Properties 
Now we investigate some of the properties that the above 
ECAN equations display when we use an ECAN defined 
by them as an associative memory network in the manner 
of a Hopfield network. 
 We consider a situation where the ECAN is supplied 
with memories via a “training” phase in which one 
imprints it with a series of binary patterns of the form 

  

€ 

P = p1,, pn[ ] , with 

€ 

pi ∈ 0,1{ } . Noisy versions of 
these patterns are then used as cue patterns during the 
retrieval process.  
 We obviously desire that the ECAN retrieve the stored 
pattern corresponding to a given cue pattern. In order to 
achieve this goal, the ECAN must converge to the correct 
fixed point.  
 Theorem: For a given value of e in the STI rent 
calculation, there is a subset of hyperbolic decision 
functions for which the ECAN dynamics converge to an 
attracting fixed point. 
 Proof: Rent is  zero whenever 

€ 

si ≤
recentMaxSTI

20
,  so we 

consider this case first. The updating process for the rent 
and wage stage can then be written as

€ 

f s( ) = s+ constant . The 
next stage is governed by the hyperbolic decision function 
 

€ 

g s( ) =
tanh shape s - FocusBoundary( )( ) +1

2
. 

 
The entire updating sequence is obtained by the 
composition 

  

€ 

g  f( ) s( ) , whose derivative is then 
 

  

€ 

g  f( )′ =
sech2 f s( )( ) ⋅ shape

2
⋅ 1( ) , 

 
which has magnitude less than 1 whenever -2 < shape < 2. 
We next consider the case 

€ 

si >
recentMaxSTI

20
. The function f  

now takes the form 
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f s( ) = s−
log 20s /recentMaxSTI( )

2
+ constant ,  

 
and we have 
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g  f( )′ =
sech2 f s( )( ) ⋅ shape

2
⋅ 1− 1

s
 

 
 

 

 
 . 

 
which has magnitude less than 1 whenever 

€ 

shape <
2 ⋅ recentMaxSTI
recentMaxSTI - 20

. Choosing the shape parameter to 

satisfy 

€ 

0 < shape < min 2, 2 ⋅ recentMaxSTI
recentMaxSTI - 20

 

 
 

 

 
  then 

guarantees that 
  

€ 

g  f( )′ <1. Finally, 
  

€ 

g  f  maps the closed 

interval [recentMinSti, recentMaxSTI] into itself, so 
applying the Contraction Mapping Theorem completes the 
proof. 

Definition and Analysis of Variant 2 
The ECAN variant described above has performed 
completely acceptably in our experiments so far; however 
we have also experimented with an alternate variant, with 
different convergence properties.  In Variant 2, the 
dynamics of the ECAN are specifically designed so that a 
certain conceptually intuitive function serves as a 
Liapunov function of the dynamics.   
 At a given time t, for a given Atom indexed i, we define 
two quantities: OUTi(t) = the total amount that Atom i pays 
in rent and tax and diffusion during the time-t iteration of 
ECAN ; INi(t) = the total amount that Atom i receives in 
diffusion, stimulus and welfare during the time-t iteration 
of ECAN.  Note that welfare is a new concept to  be 
introduced below.  We then define DIFFi(t)  = |INi(t)  - 
OUTi(t)| ; and define AVDIFF(t) as the average of DIFFi(t)  
over all i in the ECAN.   
 The design goal of Variant 2 of the ECAN equations is 
to ensure that, if the parameters are tweaked appropriately, 
AVDIFF can serve as a (deterministic or stochastic, 
depending on the details) Liapunov function for ECAN 
dynamics.  This implies that with appropriate parameters 
the ECAN dynamics will converge toward a state where 
AVDIFF=0, meaning that no Atom is making any profit or 
incurring any loss.  It must be noted that this kind of 
convergence is not always desirable, and sometimes one 
might want the parameters set otherwise.  But if one wants 
the STI components of an ECAN to converge to some 



specific values, as for instance in a classic associative 
memory application, Variant 2 can guarantee this easily. 
 In Variant 2, each ECAN cycle begins with rent 
collection and welfare distribution, which occurs via 
collecting rent via the Variant 1 equation, and then 
performing the following two steps.  Step A: calculate X, 
defined as the positive part of the total amount by which 
AVDIFF has been increased via the overall rent collection 
process.  Step B: redistribute X to needy Atoms as follows: 
For each Atom z, calculate the positive part of (OUT - IN), 
defined as deficit(z).    Distribute (X + e) wealth among all 
Atoms z, giving each Atom a percentage of X that is 
proportional to deficit(z), but never so much as to cause 
OUT < IN for any Atom (the welfare being given counts 
toward IN).  Here e>0 ensures AVDIFF decrease; e=0 may 
be appropriate if convergence is not required in a certain 
situation. 
 Step B is the welfare step, which guarantees that rent 
collection will decrease AVDIFF.  Step A calculates the 
amount by which the rich have been made poorer, and uses 
this to make the poor richer.  In the case that the sum of 
deficit(z) over all nodes z is less than X, a mid-cycle rent 
adjustment may be triggered, calculated so that step B will 
decrease AVDIFF.   (I.e. we cut rent on the rich, if the poor 
don't need their money to stay out of deficit.) 
 Similarly, in each Variant 2 ECAN cycle, there is a 
wage-paying process, which involves the wage-paying 
equation from Variant 1 followed by two steps.  Step A: 
calculate Y, defined as the positive part of the total amount 
by which AVDIFF has been increased via the overall wage 
payment process.  Step B: exert taxation based on the 
surplus Y as follows:  For each Atom z, calculate the 
positive part of (IN - OUT), defined as surplus(z).    Collect 
(Y + e1) wealth from all Atom z, collecting from each node 
a percentage of Y that is proportional to surplus(z), but 
never so much as to cause IN < OUT for any node (the 
new STI being collected counts toward OUT).  
 In case the total of surplus(z) over all nodes z is less than 
Y, one may trigger a mid-cycle wage adjustment, 
calculated so that step B will decrease AVDIFF.   I.e. we 
cut wages since there is not enough surplus to support it. 
 Finally, in the Variant 2 ECAN cycle, diffusion is done a 
little differently, via iterating the following process: If 
AVDIFF has increased during the diffusion round so far, 
then choose a random node whose diffusion would 
decrease AVDIFF, and let it diffuse; if AVDIFF has 
decreased during the diffusion round so far, then choose a 
random node whose diffusion would increase AVDIFF, 
and let it diffuse.  In carrying out these steps, we avoid 
letting the same node diffuse twice in the same round.  
This algorithm does not let all Atoms diffuse in each cycle, 
but it stochastically lets a lot of diffusion happen in a way 
that maintains  AVDIFF constant.  The iteration may be 
modified to bias toward an average decrease in AVDIFF. 
 The random element in the diffusion step, together with 
the logic of the rent/welfare and wage/tax steps, combines 
to yield the result that for Variant 2 of ECAN dynamics, 
AVDIFF is a stochastic Lyaponov function.  The details of 

the proof of this will be given elsewhere due to space 
considerations but the outline of the argument should be 
clear from the construction of Variant 2.  And note that by 
setting the e and e1 parameter to 0, the convergence 
requirement can be eliminated, allowing the network to 
evolve more spontaneously as may be appropriate in some 
contexts; these parameters allow one to explicitly adjust 
the convergence rate.   
 One may also derive results pertaining to the 
meaningfulness of the attractors, in various special cases.  
For instance, if we have a memory consisting of a set M of 
m nodes, and we imprint the memory on the ECAN by 
stimulating m nodes during an interval of time, then we 
want to be able to show that the condition where precisely 
those m nodes are in the AF is a fixed-point attractor.  
However, this is not difficult, because one must only show 
that if these m nodes and none others are in the AF, this 
condition will persist.  Rigorous proof of this and related 
theorems will appear in a follow-up paper. 

Associative  Memory 
We have carried out experiments gauging the performance 
of Variant 1 of ECAN as an associative memory, using the 
implementation of ECAN within OpenCog, and using both 
the conventional and Storkey Hebbian updating formulas.  
Extensive discussion of these results (along with Variation 
2 results) will be deferred to a later publication due to 
space limitations, but we will make a few relevant 
comments here. 
    As with a Hopfield net memory, the memory capacity 
(defined as the number of memories that can be retrieved 
from the network with high accuracy) depends on the 
sparsity of the network, with denser networks leading to 
greater capacity.  In the ECAN case the capacity also 
depends on a variety of parameters of the ECAN equations, 
and the precise unraveling of these dependencies is a 
subject of current research.  However, one interesting 
dependency has already been uncovered in our preliminary 
experimentation, which has to do with the size of the AF 
versus the size of the memories being stored. 
    Define the size of a memory (a pattern being imprinted) 
as the number of nodes that are stimulated during 
imprinting of that memory.  In a classical Hopfield net 
experiment, the mean size of a memory is usually around, 
say, .2-.5 of the number of neurons.  In typical OpenCog 
associative memory situations, we believe the mean size of 
a memory will be one or two orders of magnitude smaller 
than that, so that each memory occupies only a relatively 
small portion of the overall network. 
    What we have found is that the memory capacity of an 
ECAN is generally comparable to that of a Hopfield net 
with the same number of nodes and links, if and only if the 
ECAN parameters are tuned so that the memories being 
imprinted can fit into the AF.  That is, the AF threshold or 
(in the hyperbolic case) shape parameter must be tuned so 
that the size of the memories is not so large that the active 
nodes in a memory cannot stably fit into the AF.  This 



tuning may be done adaptively by testing the impact of 
different threshold/shape values on various memories of 
the appropriate size; or potentially a theoretical 
relationship between these quantities could be derived, but 
this has not been done yet.  This is a reasonably satisfying 
result given the cognitive foundation of ECAN: in loose 
terms what it means is that ECAN works best for 
remembering things that fit into its focus of attention 
during the imprinting process. 
 

Interaction between ECANs and other  

OpenCog Components  
Our analysis above has focused on the associative-memory 
properties of the networks, however, from the perspective 
of their utility within OpenCog or other integrative AI 
systems, this is just one among many critical aspects of 
ECANs.   In this final section we will discuss the broader 
intended utilization of ECANs in OpenCog in more depth. 
 First of all, associative-memory functionality is directly 
important in OpenCogPrime because it is used to drive 
concept creation.  The OCP heuristic called “map 
formation” creates new Nodes corresponding to prominent 
attractors in the ECAN, a step that (according to our 
preliminary results) not only increases the  memory 
capacity of the network beyond what can be achieved with 
a pure ECAN but also enables attractors to be explicitly  
manipulated by PLN inference. 
 Equally important to associative memory is the 
capability of ECANs to facilitate effective allocation of the 
attention of other cognitive processes to appropriate 
knowledge items (Atoms). For example, one key role of 
ECANs in OCP is to guide the forward and backward 
chaining processes of PLN (Probabilistic Logic Network) 
inference.  At each step, the PLN inference chainer is faced 
with a great number of inference steps from which to 
choose; and a choice is made using a statistical “bandit 
problem” mechanism that selects each possible inference 
step with a probability proportional to its expected 
“desirability.”  In this context, there is considerable appeal 
in the heuristic of weighting inference steps using 
probabilities proportional to the STI values of the Atoms 
they contain.  One thus arrives at a combined PLN/EAN 
dynamic as follows: 
 

1. An inference step is carried out, involving a 
choice among multiple possible inference steps, 
which is made using STI-based weightings (and 
made among Atoms that LTI weightings have 
deemed valuable enough to remain in RAM) 

2. The Atoms involved in the inference step are 
rewarded with STI and LTI proportionally to the 
utility of the inference step (how much it 
increases the confidence of Atoms in the system’s 
memory) 

3. The ECAN operates, and multiple Atom’s 
importance values are updated 

4. Return to Step 1 if the inference isn’t finished 

 
An analogous interplay may occur between ECANs and 
the MOSES procedure learning algorithm that also plays a 
key role in OCP.  
 It seems intuitively clear that the same attractor-
convergence properties highlighted in the present analysis 
of associative-memory behavior, will also be highly 
valuable for the application of ECANs to attention 
allocation.  If a collection of Atoms is often collectively 
useful for some cognitive process (such as PLN), then the 
associative-memory-type behavior of ECANs means that 
once a handful of the Atoms in the collection are found 
useful in a certain inference process, the other Atoms in the 
collection will get their STI significantly boosted, and will 
be likely to get chosen in subsequent portions of that same 
inference process.  This is exactly the sort of dynamics one 
would like to see occur.  Systematic experimentation with 
these interactions between ECAN and other OpenCog 
processes is one of our research priorities going forwards. 

References 
Amit, Daniel (1992).  Modeling Brain Function.  Cambridge University Press. 

Goertzel, Ben (2006).  The Hidden Pattern.  Brown Walker. 

Goertzel, Ben (2007). Virtual Easter Egg Hunting.  In Advances in Artificial 

General Intelligence, IOS Press. 

Goertzel, Ben (2008).  OpenCogPrime: Design for a Thinking Machine, online at 

http://www.opencog.org/wiki/OpenCogPrime:WikiBook 

Goertzel, Ben, Matthew Ikle’, Izabela Goertzel and Ari Heljakka.  Probabilistic 

Logic Networks.  Springer. 

Hutter, Marcus (2004).   Universal AI.  Springer. 

Looks, Moshe (2006).  Competent Program Evolution.  PhD thesis in CS 

department, Washington University at St. Louis. 
Storkey A.J. (1997) Increasing the capacity of the Hopfield network without 

sacrificing functionality, ICANN97 p451-456. 

Storkey, Amos (1998). Palimpsest Memories: A New HighCapacity Forgetful 

Learning Rule for Hopfield Networks.  

Storkey A.J. and R. Valabregue (1999) The basins of attraction of a new Hopfield 

learning rule, Neural Networks 12 869-876. 

 


