
Economic Attention Networks:
Associative Memory and Resource Allocation

for General Intelligence

Matthew Ikle’, Joel Pitt, Ben Goertzel, George Sellman

Adams State College (ASC), Singularity Institute for AI (SIAI), Novamente LLC and SIAI, ASC
1405 Bernerd Place, Rockville MD 20851, USA

ben@goertzel.org, stephan@bugaj.com

Abstract
A novel method for simultaneously storing memories and
allocating resources in AI systems is presented. The
method, Economic Attention Networks (ECANs), bears
some resemblance to the spread of activation in attractor
neural networks, but differs via explicitly differentiating two
kinds of “activation” (Short Term Importance, related to
processor allocation; and Long Term Importance, related to
memory allocation), and in using equations that are based
on ideas from economics rather than approximative neural
modeling. Here we explain the basic ideas of ECANs, and
then investigate the functionality of ECANs as associative
memories, via mathematical analysis and the reportage of
experimental results obtained from the implementation of
ECANs in the OpenCog integrative AGI system.

Introduction
One of the critical challenges confronting any system
aimed at advanced general intelligence is the allocation of
computational resources. The central nature of this issue is
highlighted by Hutter’s (2004) mathematical results
showing that if one formalizes intelligence as the
achievement of complex computable goals, then there are
very simple software programs that can achieve arbitrarily
high degrees of intelligence, so long as they are allotted
huge amounts of computational resources. In this sense,
coping with space and time limitations is the crux of the
AGI problem.
 Not surprisingly, given its central nature, the
management of computational resources ties in with a
variety of other concrete issues that AGI systems confront,
in ways depending on the specific system in question. In
the approach we will describe here, resource allocation is
carried out by the same structures and dynamics as
associative memory, whereas the relationship between
resource allocation and other system processes like
reasoning and procedure learning involves feedback
between distinct software components.
 We will describe here a specific approach to resource
allocation and associative memory, which we call

Economic Attention Networks or ECANs. ECANs have
been designed and implemented within an integrative AGI
framework called OpenCog (which overlaps with the
related Novamente Cognition Engine system; see Goertzel,
2006). However, ECANs also have meaning outside the
OpenCog context; they may be considered nonlinear
dynamical systems in roughly the same family as attractor
neural networks such as Hopfield nets (Amit, 1992). The
main focus of this paper is the study of ECANs as
associative memories, which involves mathematical and
experimental analyses that are independent of the
embedding of ECANs in OpenCog or other AGI systems.
But we will also discuss the implications of these results
for specific interactions between ECANs and other
OpenCog components

Economic Attention Networks
First we summarize the essential ideas of ECANs; in later
sections two specific variants of ECAN equational
formalizations are presented.
 An ECAN is a graph, consisting of un-typed nodes and
links, and also links that may be typed either HebbianLink
or InverseHebbianLink. It is also useful sometimes to
consider ECANs that extend the traditional graph
formalism and involve links that point to links as well as to
nodes. The term Atom will be used to refer to either nodes
or links. Each Atom in an ECAN is weighted with two
numbers, called STI (short-term importance) and LTI
(long-term importance). Each Hebbian or InverseHebbian
link is weighted with a probability value.
 The equations of an ECAN explain how the STI, LTI
and Hebbian probability values get updated over time. The
metaphor underlying these equations is the interpretation
of STI and LTI values as (separate) artificial currencies.
The motivation for this metaphor has been elaborated
somewhat in (Goertzel, 2007) and will not be recapitulated
here. The fact that STI (for instance) is a currency means
that the total amount of STI in the system is conserved
(except in unusual instances where the ECAN controller

decides to introduce inflation or deflation and explicitly
manipulate the amount of currency in circulation), a fact
that makes the dynamics of an ECAN dramatically
different than that of, say, an attractor neural network (in
which there is no law of conservation of activation).
 Conceptually, the STI value of an Atom is interpreted to
indicate the immediate urgency of the Atom to the ECAN
at a certain point in time; whereas the LTI value of an
Atom indicates the amount of value the ECAN perceives in
the retention of the Atom in memory (RAM). An ECAN
will often be coupled with a “Forgetting” process that
removes low-LTI Atoms from memory according to
certain heuristics.
 STI and LTI values will generally vary continuously, but
the ECAN equations we introduce below contain the
notion of an AttentionalFocus (AF), consisting of those
Atoms in the ECAN with the highest STI values. The AF
is given its meaning by the existence of equations that treat
Atoms with STI above a certain threshold differently.
 Conceptually, the probability value of a HebbianLink
from A to B is the odds that if A is in the AF, so is B; and
correspondingly, the InverseHebbianLink from A to B is
weighted with the odds that if A is in the AF, then B is not.
A critical aspect of the ECAN equations is that Atoms
periodically spread their STI and LTI to other Atoms that
connect to them via Hebbian and InverseHebbianLinks;
this is the ECAN analogue of activation spreading in
neural networks.
 Based on the strong correspondences, one could
plausibly label ECANs as “Economic Neural Networks”;
however we have chosen not to go that path, as ECANs are
not intended as plausible neural models, but rather as
nonlinear dynamical systems engineered to fulfill certain
functions within non-brain-emulative AGI systems.

Integration into OpenCog and the NCE
The OpenCog AGI framework, within which the current
ECAN implementation exists, is a complex framework
with a complex underlying theory, and here we will only
hint at some of its key aspects. OpenCog is an open-source
software framework designed to support the construction
of multiple AI systems; and the current main thrust of work
within OpenCog is the implementation of a specific AGI
design called OpenCogPrime (OCP), which is presented in
the online wikibook (Goertzel, 2008). Much of the
OpenCog software code, and many of the ideas in the OCP
design, have derived from the open-sourcing of aspects of
the proprietary Novamente Cognition Engine, which has
been described extensively in previous publications.
 The first key entity in the OpenCog software
architecture is the AtomTable, which is a repository for
weighted, labeled hypergraph nodes and hyperedges. In
the OpenCog implementation of ECANs, the nodes and
links involved in the ECAN are stored here. OpenCog also
contains an object called the CogServer, which wraps up
an AtomTable as well as (among other objects) a
Scheduler that schedules a set of MindAgent objects that
each (when allocated processor time by the Scheduler)

carry out cognitive operations involving the AtomTable.
The essence of the OCP design consists of a specific set of
MindAgents designed to work together in a collaborative
way in order to create a system that carries out actions
oriented toward achieving goals (where goals are
represented as specific nodes in the AtomTable, and
actions are represented as Procedure objects indexed by
Atoms in the AtomTable, and the utility of a procedure for
achieving a goal is represented by a certain set of
probabilistic logical links in the AtomTable, etc.).
OpenCog is still at an experimental stage but has been used
for such projects as statistical language analysis,
probabilistic inference, and the control of virtual agents in
online virtual worlds (see opencog.org).
 So, in an OpenCog context, ECAN consists of a set of
Atom types, and then a set of MindAgents carrying out
ECAN operations such as HebbianLinkUpdating and
ImportanceUpdating. OCP also requires many other
MindAgents carrying out other cognitive processes such as
probabilistic logical inference according to the PLN system
(Goertzel et al, 2008) and evolutionary procedure learning
according to the MOSES system (Looks, 2006). The
interoperation of the ECAN MindAgents with these other
MindAgents is a subtle issue that will be briefly discussed
in the final section of the paper, but the crux is simple to
understand.
 The CogServer is understood to maintain a kind of
central bank of STI and LTI funds. When a non-EAN
MindAgent finds an Atom valuable, it sends that Atom a
certain amount of Stimulus, which results in that Atom’s
STI and LTI values being increased (via equations to be
presented below, that transfer STI and LTI funds from the
CogServer to the Atoms in question). Then, the ECAN
ImportanceUpdating MindAgent carries out multiple
operations, including some that transfer STI and LTI funds
from some Atoms back to the CogServer.

Definition and Analysis of Variant 1
 We now define a specific set of equations in accordance
with the ECAN conceptual framework described above.
We define

€

HSTI = s1,,sn[] to be the vector of STI

values, and

€

C =

c11,,c1n

cn1,,cnn

 to be the connection matrix of

Hebbian probability values, where it is assumed that the
existence of a HebbianLink or InverseHebbianLink
between A and B are mutually exclusive possibilities. We

also define

€

CLTI =

g11,,g1n

gn1,,gnn

 to be the matrix of LTI

values for each of the corresponding links.
 We assume an updating scheme in which, periodically, a
number of Atoms are allocated Stimulus amounts, which

causes the corresponding STI values to change according
to the equations

€

∀i : si = si − rent +wages ,

where rent and wages are given by

€

rent =
Rent ⋅max 0,

log 20si
recentMaxSTI

2

, if si > 0

0, if si ≤ 0

and

€

wages =

Wage Stimulus

pi
i=1

n

∑
, if pi =1

Wage Stimulus

n − pi
i=1

n

∑
, if pi = 0

,

where

€

P = p1,, pn[] , with

€

pi ∈ 0,1{ } is the cue
pattern for the pattern that is to be retieved.
All quantities enclosed in angled brackets are system
parameters, and LTI updating is accomplished using a
completely analogous set of equations.
 The changing STI values then cause updating of the
connection matrix, according to the “conjunction”
equations. First define

€

normi =

si
recentMaxSTI

, if si ≥ 0

si
recentMinSTI

, if si < 0

.

Next define

€

conj = Conjunction si,s j() = normi × normj

and

€

′ c ij = ConjDecay conj+ 1− conj()cij .

Finally update the matrix elements by setting

€

cij =
c ji = ′ c ij , if ′ c ij ≥ 0
′ c ij , if ′ c ij < 0

.

We are currently also experimenting with updating the
connection matrix in accordance with the equations
suggested by Storkey (1997, 1998, 1999.)

 A key property of these equations is that both wages
paid to, and rent paid by, each node are positively
correlated to their STI values. That is, the more important
nodes are paid more for their services, but they also pay
more in rent.
 A fixed percentage of the links with the lowest LTI
values is then forgotten (which corresponds equationally to
setting the LTI to 0).
 Separately from the above, the process of Hebbian
probability updating is carried out via a diffusion process
in which some nodes “trade” STI utilizing a diffusion
matrix D, a version of the connection matrix C normalized
so that D is a left stochastic matrix. D acts on a similarly
scaled vector v, normalized so that v is equivalent to a
probability vector of STI values.
 The decision about which nodes diffuse in each
diffusion cycle is carried out via a decision function. We
currently are working with two types of decision functions:
a standard threshold function, by which nodes diffuse if
and only if the nodes are in the AF; and a stochastic
decision function in which nodes diffuse with probability

€

tanh shape si −FocusBoundary()() +1
2

, where shape and

FocusBoundary are parameters.
 The details of the diffusion process are as follows. First,
construct the diffusion matrix from the entries in the
connection matrix as follows:

€

If cij ≥ 0, then dij = cij ,
else, set d ji = −cij .

Next, we normalize the columns of D to make D a left
stochastic matrix. In so doing, we ensure that each node
spreads no more that a

€

MaxSpread proportion of its STI,
by setting

€

if dij
i=1

n

∑ > MaxSpread :

€

dij =

dij ×
MaxSpread

dij
i=1

n

∑
, for i ≠ j

d jj =1− MaxSpread

else:

€

d jj =1− dij
i=1
i≠ j

n

∑

Now we obtain a scaled STI vector v by setting

€

minSTI =
i∈ 1,2,,n{ }
min si and maxSTI =

i∈ 1,2,,n{ }
max si

€

vi =
si −minSTI

maxSTI−minSTI

The diffusion matrix is then used to update the node STIs

€

′ v = Dv

and the STI values are rescaled to the interval

€

minSTI,maxSTI[] .
 In both the rent and wage stage and in the diffusion
stage, the total STI and LTI funds of the system each
separately form a conserved quantity: in the case of
diffusion, the vector v is simply the total STI times a
probability vector. To maintain overall system funds within
homeostatic bounds, a mid-cycle tax and rent-adjustment
can be triggered if necessary; the equations currently used
for this are

•

€

Rent =
recent stimulus awarded before update× Wage

recent size of AF
;

•

€

tax = x
n

, where x is the distance from the current

AtomSpace bounds to the center of the
homeostatic range for AtomSpace funds;

•

€

∀i : si = si − tax

Investigation of Convergence Properties
Now we investigate some of the properties that the above
ECAN equations display when we use an ECAN defined
by them as an associative memory network in the manner
of a Hopfield network.
 We consider a situation where the ECAN is supplied
with memories via a “training” phase in which one
imprints it with a series of binary patterns of the form

€

P = p1,, pn[] , with

€

pi ∈ 0,1{ } . Noisy versions of
these patterns are then used as cue patterns during the
retrieval process.
 We obviously desire that the ECAN retrieve the stored
pattern corresponding to a given cue pattern. In order to
achieve this goal, the ECAN must converge to the correct
fixed point.
 Theorem: For a given value of e in the STI rent
calculation, there is a subset of hyperbolic decision
functions for which the ECAN dynamics converge to an
attracting fixed point.
 Proof: Rent is zero whenever

€

si ≤
recentMaxSTI

20
, so we

consider this case first. The updating process for the rent
and wage stage can then be written as

€

f s() = s+ constant . The
next stage is governed by the hyperbolic decision function

€

g s() =
tanh shape s - FocusBoundary()() +1

2
.

The entire updating sequence is obtained by the
composition

€

g f() s() , whose derivative is then

€

g f()′ =
sech2 f s()() ⋅ shape

2
⋅ 1() ,

which has magnitude less than 1 whenever -2 < shape < 2.
We next consider the case

€

si >
recentMaxSTI

20
. The function f

now takes the form

€

f s() = s−
log 20s /recentMaxSTI()

2
+ constant ,

and we have

€

g f()′ =
sech2 f s()() ⋅ shape

2
⋅ 1− 1

s

 .

which has magnitude less than 1 whenever

€

shape <
2 ⋅ recentMaxSTI
recentMaxSTI - 20

. Choosing the shape parameter to

satisfy

€

0 < shape < min 2, 2 ⋅ recentMaxSTI
recentMaxSTI - 20

 then

guarantees that

€

g f()′ <1. Finally,

€

g f maps the closed

interval [recentMinSti, recentMaxSTI] into itself, so
applying the Contraction Mapping Theorem completes the
proof.

Definition and Analysis of Variant 2
The ECAN variant described above has performed
completely acceptably in our experiments so far; however
we have also experimented with an alternate variant, with
different convergence properties. In Variant 2, the
dynamics of the ECAN are specifically designed so that a
certain conceptually intuitive function serves as a
Liapunov function of the dynamics.
 At a given time t, for a given Atom indexed i, we define
two quantities: OUTi(t) = the total amount that Atom i pays
in rent and tax and diffusion during the time-t iteration of
ECAN ; INi(t) = the total amount that Atom i receives in
diffusion, stimulus and welfare during the time-t iteration
of ECAN. Note that welfare is a new concept to be
introduced below. We then define DIFFi(t) = |INi(t) -
OUTi(t)| ; and define AVDIFF(t) as the average of DIFFi(t)
over all i in the ECAN.
 The design goal of Variant 2 of the ECAN equations is
to ensure that, if the parameters are tweaked appropriately,
AVDIFF can serve as a (deterministic or stochastic,
depending on the details) Liapunov function for ECAN
dynamics. This implies that with appropriate parameters
the ECAN dynamics will converge toward a state where
AVDIFF=0, meaning that no Atom is making any profit or
incurring any loss. It must be noted that this kind of
convergence is not always desirable, and sometimes one
might want the parameters set otherwise. But if one wants
the STI components of an ECAN to converge to some

specific values, as for instance in a classic associative
memory application, Variant 2 can guarantee this easily.
 In Variant 2, each ECAN cycle begins with rent
collection and welfare distribution, which occurs via
collecting rent via the Variant 1 equation, and then
performing the following two steps. Step A: calculate X,
defined as the positive part of the total amount by which
AVDIFF has been increased via the overall rent collection
process. Step B: redistribute X to needy Atoms as follows:
For each Atom z, calculate the positive part of (OUT - IN),
defined as deficit(z). Distribute (X + e) wealth among all
Atoms z, giving each Atom a percentage of X that is
proportional to deficit(z), but never so much as to cause
OUT < IN for any Atom (the welfare being given counts
toward IN). Here e>0 ensures AVDIFF decrease; e=0 may
be appropriate if convergence is not required in a certain
situation.
 Step B is the welfare step, which guarantees that rent
collection will decrease AVDIFF. Step A calculates the
amount by which the rich have been made poorer, and uses
this to make the poor richer. In the case that the sum of
deficit(z) over all nodes z is less than X, a mid-cycle rent
adjustment may be triggered, calculated so that step B will
decrease AVDIFF. (I.e. we cut rent on the rich, if the poor
don't need their money to stay out of deficit.)
 Similarly, in each Variant 2 ECAN cycle, there is a
wage-paying process, which involves the wage-paying
equation from Variant 1 followed by two steps. Step A:
calculate Y, defined as the positive part of the total amount
by which AVDIFF has been increased via the overall wage
payment process. Step B: exert taxation based on the
surplus Y as follows: For each Atom z, calculate the
positive part of (IN - OUT), defined as surplus(z). Collect
(Y + e1) wealth from all Atom z, collecting from each node
a percentage of Y that is proportional to surplus(z), but
never so much as to cause IN < OUT for any node (the
new STI being collected counts toward OUT).
 In case the total of surplus(z) over all nodes z is less than
Y, one may trigger a mid-cycle wage adjustment,
calculated so that step B will decrease AVDIFF. I.e. we
cut wages since there is not enough surplus to support it.
 Finally, in the Variant 2 ECAN cycle, diffusion is done a
little differently, via iterating the following process: If
AVDIFF has increased during the diffusion round so far,
then choose a random node whose diffusion would
decrease AVDIFF, and let it diffuse; if AVDIFF has
decreased during the diffusion round so far, then choose a
random node whose diffusion would increase AVDIFF,
and let it diffuse. In carrying out these steps, we avoid
letting the same node diffuse twice in the same round.
This algorithm does not let all Atoms diffuse in each cycle,
but it stochastically lets a lot of diffusion happen in a way
that maintains AVDIFF constant. The iteration may be
modified to bias toward an average decrease in AVDIFF.
 The random element in the diffusion step, together with
the logic of the rent/welfare and wage/tax steps, combines
to yield the result that for Variant 2 of ECAN dynamics,
AVDIFF is a stochastic Lyaponov function. The details of

the proof of this will be given elsewhere due to space
considerations but the outline of the argument should be
clear from the construction of Variant 2. And note that by
setting the e and e1 parameter to 0, the convergence
requirement can be eliminated, allowing the network to
evolve more spontaneously as may be appropriate in some
contexts; these parameters allow one to explicitly adjust
the convergence rate.
 One may also derive results pertaining to the
meaningfulness of the attractors, in various special cases.
For instance, if we have a memory consisting of a set M of
m nodes, and we imprint the memory on the ECAN by
stimulating m nodes during an interval of time, then we
want to be able to show that the condition where precisely
those m nodes are in the AF is a fixed-point attractor.
However, this is not difficult, because one must only show
that if these m nodes and none others are in the AF, this
condition will persist. Rigorous proof of this and related
theorems will appear in a follow-up paper.

Associative Memory
We have carried out experiments gauging the performance
of Variant 1 of ECAN as an associative memory, using the
implementation of ECAN within OpenCog, and using both
the conventional and Storkey Hebbian updating formulas.
Extensive discussion of these results (along with Variation
2 results) will be deferred to a later publication due to
space limitations, but we will make a few relevant
comments here.
 As with a Hopfield net memory, the memory capacity
(defined as the number of memories that can be retrieved
from the network with high accuracy) depends on the
sparsity of the network, with denser networks leading to
greater capacity. In the ECAN case the capacity also
depends on a variety of parameters of the ECAN equations,
and the precise unraveling of these dependencies is a
subject of current research. However, one interesting
dependency has already been uncovered in our preliminary
experimentation, which has to do with the size of the AF
versus the size of the memories being stored.
 Define the size of a memory (a pattern being imprinted)
as the number of nodes that are stimulated during
imprinting of that memory. In a classical Hopfield net
experiment, the mean size of a memory is usually around,
say, .2-.5 of the number of neurons. In typical OpenCog
associative memory situations, we believe the mean size of
a memory will be one or two orders of magnitude smaller
than that, so that each memory occupies only a relatively
small portion of the overall network.
 What we have found is that the memory capacity of an
ECAN is generally comparable to that of a Hopfield net
with the same number of nodes and links, if and only if the
ECAN parameters are tuned so that the memories being
imprinted can fit into the AF. That is, the AF threshold or
(in the hyperbolic case) shape parameter must be tuned so
that the size of the memories is not so large that the active
nodes in a memory cannot stably fit into the AF. This

tuning may be done adaptively by testing the impact of
different threshold/shape values on various memories of
the appropriate size; or potentially a theoretical
relationship between these quantities could be derived, but
this has not been done yet. This is a reasonably satisfying
result given the cognitive foundation of ECAN: in loose
terms what it means is that ECAN works best for
remembering things that fit into its focus of attention
during the imprinting process.

Interaction between ECANs and other

OpenCog Components
Our analysis above has focused on the associative-memory
properties of the networks, however, from the perspective
of their utility within OpenCog or other integrative AI
systems, this is just one among many critical aspects of
ECANs. In this final section we will discuss the broader
intended utilization of ECANs in OpenCog in more depth.
 First of all, associative-memory functionality is directly
important in OpenCogPrime because it is used to drive
concept creation. The OCP heuristic called “map
formation” creates new Nodes corresponding to prominent
attractors in the ECAN, a step that (according to our
preliminary results) not only increases the memory
capacity of the network beyond what can be achieved with
a pure ECAN but also enables attractors to be explicitly
manipulated by PLN inference.
 Equally important to associative memory is the
capability of ECANs to facilitate effective allocation of the
attention of other cognitive processes to appropriate
knowledge items (Atoms). For example, one key role of
ECANs in OCP is to guide the forward and backward
chaining processes of PLN (Probabilistic Logic Network)
inference. At each step, the PLN inference chainer is faced
with a great number of inference steps from which to
choose; and a choice is made using a statistical “bandit
problem” mechanism that selects each possible inference
step with a probability proportional to its expected
“desirability.” In this context, there is considerable appeal
in the heuristic of weighting inference steps using
probabilities proportional to the STI values of the Atoms
they contain. One thus arrives at a combined PLN/EAN
dynamic as follows:

1. An inference step is carried out, involving a
choice among multiple possible inference steps,
which is made using STI-based weightings (and
made among Atoms that LTI weightings have
deemed valuable enough to remain in RAM)

2. The Atoms involved in the inference step are
rewarded with STI and LTI proportionally to the
utility of the inference step (how much it
increases the confidence of Atoms in the system’s
memory)

3. The ECAN operates, and multiple Atom’s
importance values are updated

4. Return to Step 1 if the inference isn’t finished

An analogous interplay may occur between ECANs and
the MOSES procedure learning algorithm that also plays a
key role in OCP.
 It seems intuitively clear that the same attractor-
convergence properties highlighted in the present analysis
of associative-memory behavior, will also be highly
valuable for the application of ECANs to attention
allocation. If a collection of Atoms is often collectively
useful for some cognitive process (such as PLN), then the
associative-memory-type behavior of ECANs means that
once a handful of the Atoms in the collection are found
useful in a certain inference process, the other Atoms in the
collection will get their STI significantly boosted, and will
be likely to get chosen in subsequent portions of that same
inference process. This is exactly the sort of dynamics one
would like to see occur. Systematic experimentation with
these interactions between ECAN and other OpenCog
processes is one of our research priorities going forwards.

References
Amit, Daniel (1992). Modeling Brain Function. Cambridge University Press.

Goertzel, Ben (2006). The Hidden Pattern. Brown Walker.

Goertzel, Ben (2007). Virtual Easter Egg Hunting. In Advances in Artificial

General Intelligence, IOS Press.

Goertzel, Ben (2008). OpenCogPrime: Design for a Thinking Machine, online at

http://www.opencog.org/wiki/OpenCogPrime:WikiBook

Goertzel, Ben, Matthew Ikle’, Izabela Goertzel and Ari Heljakka. Probabilistic

Logic Networks. Springer.

Hutter, Marcus (2004). Universal AI. Springer.

Looks, Moshe (2006). Competent Program Evolution. PhD thesis in CS

department, Washington University at St. Louis.
Storkey A.J. (1997) Increasing the capacity of the Hopfield network without

sacrificing functionality, ICANN97 p451-456.

Storkey, Amos (1998). Palimpsest Memories: A New HighCapacity Forgetful

Learning Rule for Hopfield Networks.

Storkey A.J. and R. Valabregue (1999) The basins of attraction of a new Hopfield

learning rule, Neural Networks 12 869-876.

