
Parsing PCFG within a General Probabilistic Inference Framework

Arthi Murugesan
Department of Cognitive Science
Rensselaer Polytechnic Institute

Troy NY 12180

Nicholas L. Cassimatis
Department of Cognitive Science
Rensselaer Polytechnic Institute

Troy NY 12180

Abstract

One of the aims of Artificial General Intelligence(AGI)
is to use the same methods to reason over a large num-
ber of problems spanning different domains. Therefore,
advancing general tools that are used in a number of
domains like language, vision and intention reading is
a step toward AGI. Probabilistic Context Free Gram-
mar (PCFG) is one such formalism used in many do-
mains. However, many of these problems can be dealt
with more effectively if relationships beyond those en-
coded in PCFGs (category, order and parthood) can
be included in inference. One obstacle to using more
general inference approaches for PCFG parsing is that
these approaches often require all state variables in a
domain to be known in advance. However, since some
PCFGs license infinite derivations, it is in general im-
possible to know all state variables before inference.
Here, we show how to express PCFGs in a new proba-
bilistic framework that enables inference over unknown
objects. This approach enables joint reasoning over
both constraints encoded by a PCFG and other con-
straints relevant to a problem. These constraints can
be encoded in a first-order language that in addition
to encoding causal conditional probabilities can also
represent (potentially cyclic) boolean constraints.

Introduction
An important aspect of general intelligence is that the
same method can be applied to various problems span-
ning different domains. It is believed that several com-
monalities underlie the various domains of cognition
and some of them have been pointed out by the theory
of the Cognitive Substrate (Cassimatis, 2006). These
include temporal ordering, part hierarchies, generative
processes and categories. Probabilistic Context Free
Grammars(PCFG) is a formalism that has been widely
used to model these phenomena in various domains like
vision, RNA folding and Natural Language Processing.
Hence improving the coverage of PCFG and integrat-
ing PCFGs with a general probabilistic inference frame-
work is a step towards achieving Artificial General In-
telligence(AGI).

Probabilistic Context Free Grammars (or Stochastic
Context Free Grammars) encode a few types of relations
like temporal ordering, category and parthood. These

kinds of relations play an important role in a wide vari-
ety of domains, including natural language (Charniak,
2000), the secondary structure of RNA (Sakakibara,
Brown, Underwood, Mian & Haussler, 1994), computer
vision (Moore & Essa, 2002), plan recognition (Pyna-
dath & Wellman, 2000), intention reading and high-
level behavior recognition (Nguyen, Bui, Venkatesh &
West, 2003).

Though these relations encoded by PCFG can be
used in different domains, many problems require the
representation of additional relations. Constraints such
as causality can not be expressed within PCFG. In the
domain of natural language processing, for example,
syntactic regularities are captured by the grammar and
improvements are obtained by adding more constraints
including lexicalization (Collins, 2003). However, vi-
sual cues, social context, individual bias and semantics
are all factors affecting language processing (Ferguson
& Allen, 2007) that have no straightforward PCFG rep-
resentation.

The additional relations can be represented in more
general frameworks such as Bayesian networks and
weighted constraint SAT solvers. These systems, be-
sides modeling PCFG constraints, can also encode a
variety of other constraints within the same framework.
However, these systems typically require all objects or
state variables in a domain to be known in advance and
thus are poorly suited for PCFG parsing, which can
lead to infinite derivations.

A few probabilistic inference approaches deal with
problems that have a large number of grounded con-
straints by utilizing on demand or lazy grounding of
constraints (Domingos et al. 2006). However, these
systems nevertheless require that all the possible ob-
jects of the domain be declared in advance.

Approach
Here, we describe a new general probabilistic inference
framework that allows inference over objects that are
not known in advance, but instead are generated as
needed. This key feature makes it possible to harness
the power of PCFGs and the full flexibility of more gen-
eral frameworks within a single, integrated system. Our
approach to encoding and parsing PCFG in a general

probabilistic inference framework has three features:

Explicitly Encode Constraints Implicit in
PCFG
Implicit in PCFG are several constraints. For example,
(a) every nonterminal in a derivation must ultimately
be manifest as a terminal and (b) every phrase can
be immediately dominated by only one other phrase.
Explicitly encoding these constraints in a more expres-
sive probabilistic inference framework allows them to be
jointly reasoned over with other forms of constraints.

Relational Representation
Even with grammars that license only finite derivations,
the number of such derivations can be very large. This
translates into inference problems with large numbers
of state variables, and the resulting memory demands
can render this kind of problem intractable. One way
to overcome this is to use relational probabilistic lan-
guages, for which there are inference approaches that
significantly reduce the memory demands imposed by
large numbers of state variables (Domingos, Kok, Poon,
Richardson & Singla, 2006).

Licensing the Existence of Unknown
Objects
We will use a probabilistic framework, GenProb, that
enables reasoning over objects not known prior to in-
ference.

Generative Probabilistic Theory
These three desiderata mentioned are manifest in the
Generative Probabilistic theory, GenProb (under re-
view). GenProb is a relational language for expressing
probabilistic constraints over unknown objects. This
language supports both causal conditional probabilities
and (potentially cyclic) boolean constraints. An exact
inference algorithm has been defined for GenProb the-
ories (under review) that can be classified as increas-
ing cost models. PCFG problems are increasing cost
models and hence exact reasoning over these possibly
infinite models is possible.

Syntax of GenProb
GenProb is a language for expressing probabilistic re-
lational theories over unknown objects. The following
highly simplified example theory of an airplane radar
detector illustrates GenProb.

”Any particular plane has a 1% chance of being
within range of a radar station. The radar display gen-
erates blips that indicate a strong possibility of a plane
being detected and blips that indicate a weak possibil-
ity. Strong blips are only caused by planes, whereas
weak blips can be caused by noise .01% of the time.
Planes being tracked are fitted with collision warning
systems that, in the presence of other planes in range,
have a 90% chance of sounding an alarm that is trans-
mitted to the radar station.”

The following formulae indicate the priors on a par-
ticular plane being in range and on noise:
True() −→(.01) InRange(?p) ∧ Plane(?p)
True() −→(.001) WeakBlip(?b)
The causal aspects of the theory are indicated with con-
ditionals:
InRange(?p) ∧ Plane(?p) −→
(.3)StrongBlip(?b), (.5)WeakBlip(?b) ,
(.2) NoBlip(?b), ?p
Detect(?p1, ?p2) ∧ Plane(?p1) ∧ Plane(?p2) ∧
InRange −→ (.9)TransitAlarm(?p1), ?p1, ?p2

The first conditional indicates that a plane that is in
range will have one and only one of the following ef-
fects: a strong blip (in 30% of cases), an uncertain blip
(50%), and no blip otherwise. The occurrence of ?p af-
ter the final comma indicates that a blip licenses the
existence of a plane to be inferred. The other variables
are implicitly universally quantified. This will be made
more precise below.The alarm detection system can be
indicated thus:
TransitAlarm(?p1) =⇒ AlarmSound()
Conditionals with numbers are called causal condition-
als and those without numbers are called logical condi-
tionals. Logical conditionals are hard constraints.

Since blips occur in the consequents of causal condi-
tionals, they must be the effect of one of these condi-
tionals. In this case, strong blips can only be caused by
planes, while weak blips can be caused by planes and
by noise. We label the causal interpretation that an
effect must be caused by one of its causes(constraint’s
antecedents being true) as mandatory causation. Such
mandatory causation is not implied by logical condi-
tionals. Mandatory causation for literals can be neu-
tralized with a causal conditional whose antecedent is
True(), which (see below) is always true.

More formally, a GenProb theory is a set of causal
and logical conditionals. Causal conditionals are of
the form C1 ∧ ... ∧Cn −→ (p1)E1, ..., (pm)Em, ...?vi, ...,
where 0 ≤ pi ≤ 1 and where the pi sum to 1, each of
the Ci are either literals or negations thereof, and the
Ei are conjunctions of literals. Each Ei conjunction is
called an effect of the conditional and each vi is called
a posited variable. Non-posited variables are implicitly
universally quantified. Literals are predicates with ar-
guments that are terms. Terms that are not variables
are called ”objects”. Logical conditionals are of the
form A1 ∧ ... ∧ An =⇒ B1 ∧ ... ∧ Bn ,where each con-
junct is either a literal or a negation thereof. Literal a
is a grounding of literal b if they are equivalent under
an assignment of variables to objects in b and no vari-
ables occur in a. Literals and conditionals are grounded
if they contain no variables.

Exact Inference Over GenProb
Many of the existing approaches for combining first-
order logic and probabilistic graphical models proposi-
tionalize relational theories and making inferences over
these propositionalized formulae. However, most of
these approaches require all objects in the domain to be

known in advance, although many important problems
like probabilistic context-free grammars involve objects
that are initially unknown and permit infinite deriva-
tions.

Theories over potentially unknown objects pose two
problems for inference approaches based on proposi-
tionalization. First, theories of finite size that ex-
press relations over unknown objects often require infi-
nite models. For example, the formula, Mammal(a) ∧
∀x(Mammal(x) −→ Mammal(mother(x))) (together
with formulae stating that a mammal cannot be its own
ancestor) require an infinite model because as mother
must also have a mother who must also have a mother,
ad infinitum. Likewise, some context-free grammars
with finite numbers of rules and terminals can gener-
ate an infinite number of sentences. Since an algorithm
cannot enumerate an infinite model in finite time, we
must find a way of finitely characterizing solutions to
problems that have infinite models.

A second problem associated with unknown objects is
that even if all models of a theory can be finitely charac-
terized, there may nevertheless be infinitely many such
models. Complete satisfiability algorithms (e.g., those
based on Davis-Putnam-Logemann-Lovelan DPLL al-
gorithm) over finite domains are guaranteed to halt be-
cause they perform exhaustive search through the space
of possible models. Thus, developing model finding al-
gorithms when there are infinitely many possible mod-
els poses additional difficulties over standard complete
satisfiability algorithms. Exact inference over a subset
of GenProb theories has been defined (under review).

The key approach behind the inference mechanism, is
to convert GenProb theory to a corresponding weighted
satisfiability (SAT) model. However, since GenProb li-
censes unknown objects, this weighted SAT model must
also allow the licensing of unknown objects during in-
ference. Therefore, a version of SAT called the Genera-
tive SAT(GenSAT) has been defined. Also an exact in-
ference algorithm, Generative DPLL (GenDPLL), that
makes guaranteed inference over GenSAT constraints is
defined. GenDPLL is a DPLL-like branch-and-bound
algorithm that lazily posits new objects and instanti-
ates clauses involving them. It has been prooved that
GenDPLL is guaranteed to find finite relevant models of
certain classes of GenSAT theories with infinite models,
which we call increasing cost models.

Increasing cost models are theories in which the in-
troduction of new constraints can only lead to models
of lower cost. PCFG is one such theory, because the
introduction of more branches to a parse tree always
leads to a less probable solution (or an increased cost
model).

Mapping PCFG onto GenProb
Language

Jointly reasoning over PCFG and other constraints is
enabled by expressing PCFG problems in the GenProb
language and using the defined inference mechanisms

of GenProb to reason over these constraints. A PCFG
rule is of the form:
X → (Prob1)u11u12 ... u1m1

| (Prob2)u21u22 ... u2m2

...
| (Probn)un1un2 ... unmn

where the antecedent X on the LHS of the rule is
called a non-terminal. The rule is called a production
and is described as the non-terminal X generating the
RHS symbols. A symbol that does not generate any
further symbols i.e. never occurs on the LHS of a rule
is called a terminal.

The rule also captures probability of the non-terminal
generation a particular set of symbols like u11u1m1

or u21u2m2 through the numbers Prob1 and Prob2

respectively. The sum of all the probabilities is 1.∑n
i=1 Probi = 1
A grammar G generates a language L(G) using the

PCFG rules in R. The functionality of a parser P for a
given string (I) is to determine whether and how this
string (I) can be generated from the grammar (G) (i.e.,
to determine if (I) is a member of L(G)).There are sev-
eral implicit constraints in the generation of a language.
Our aim is to formalize and explicitly encode these con-
straints in the GenProb language.

The Order Constraint

Probabilistic rules in most language are generally order
independent with regard to both the order of the input
and the order of the terms in their constraints. How-
ever, the language generated by G depends on several
ordered components including the order of the list of
terminals in the string (I) and the order of right hand
side(RHS) components in a PCFG rule.

Ordering of Input

Let the input I, say A1, A2, An, be the ordered
sequence of input terminals for which the parse has
to be determined. The general notion of ordering of
events can be broken down into 1. capturing the time
of occurrence of an event(both start and end points)
and 2. establishing relations between these time of
occurrences. The constraints of I (A1, A2 .. An) is
captured using the following grounded propositions.
Occur(a1), IsA(a1, A1),
StartTime(a1, t1), EndTime(a1, t1),
ImmediatelyBefore(t1, t2) ,
Occur(a2), IsA(a2, A2),
StartTime(a2, t2), EndTime(a2, t2),
ImmediatelyBefore(t2, t3) ,
...
Occur(an-1), IsA(an-1, An-1),
StartTime(an-1, tn-1), EndTime(an-1, tn-1),
ImmediatelyBefore(tn-1, tn),
Occur(an), IsA(an, An),
StartTime(an, tn), EndTime(an, tn)

Order of PCFG Rule Arguments
A typical PCFG rule(R) of format X → (Prob)u1u2 ...
um depends on the order of the u symbols. According
to the definition of R, u symbols can be both termi-
nals and non-terminals. The same ordering technique
used to order the input terminals I, can be used to or-
der RHS components of R. However it is to be noted
that this scheme also requires associating non-terminal
symbols with the time of their occurrence. Hence the
non terminal X on the LHS is also associated with the
entire time interval of all the consequents. (We’ll also
expand on this in the creation of new phrases section)
Occur(?xobj) ∧ IsA(?xobj, X) ∧
StartTime(?xobj, ?t0) ∧ EndTime(?xobj, ?tn)
−→ (Prob)
Occur(?u1obj) ∧ IsA(?u1obj, u1) ∧
StartTime(?u1obj,?t0) ∧ EndTime(?u1obj, ?t1)
∧ ImmediatelyBefore (?t1, ?t2) ∧
...
Occur(?unobj) ∧ IsA(?unobj, un) ∧
StartTime(?unobj, ?t(n-1)) ∧
EndTime(?unobj, ?tn)

Creation of New Objects
The GenProb constraints that capture the PCFG gen-
eration rules have unbound objects on both sides as
shown in the ordering constraint of R . The GenProb
language handles an unbound constraint by creating a
new object for the unbound variable in the LHS when
the pattern in the RHS is matched completely. The new
object is created through the process of skolemization.

Specifically with respect to the rule of the ordering
constraint, when the objects of the RHS and their cor-
responding category, time information match the pat-
tern, the ?xObj on the LHS is created. Also the time
information which is already bound by the RHS pattern
matching, is asserted for the new object.

Unique Dominator
Another implicit constraint of L(G) is the unique par-
ent relationship. Every node can have only one parent
creating a strict parse tree and disallowing a multi-tree.

The unique parent relationship is captured in Gen-
Prob language by introducing part-hood associations.
Every node belongs or is a part of its parent node, and
a node cannot be a part of more than one parent.
PartOf(?childNode, ?parentNode1) ∧
PartOf(?childNode, ?parentNode2) ∧
NOT Same(?parentNode1, ?parentNode2)
=⇒ FALSE

Mandatory Parent
The GenProb language handles two kinds of con-
straints: causal and logical constraints. Any conse-
quent of a causal constraint is required (according to
mandatory causation) to have at least one of its causes
to be true. Thus, if P1(a) −→ R(a), P2(a) −→ R(a) ,
... , Pn(a) −→ R(a) are all the causal conditionals with

R(a) in the consequent, any model where R(a) is true
must have at least one of Pi(a) being true. This is cap-
tured in GenProb by keeping track of all the causes of
grounded propositions and adding a logical constraints
called the mandatory causation constraint.

Figure 1: Captures the mandatory parent rule that the
node R(a) cannot exist with at least one of its parents:
NOT P1(a) ∧ NOTP2(a) ∧ ... ∧NOTPn(a) =⇒ NOT
R(a)

In PCFG since the cause of every node is the parent
node generating it, the constraint that at least one par-
ent of every node should be true captured in GenProb
language. Hence there can be no node that is uncon-
nected to the parse tree.

Unique Manifestation
In the PCFG grammar G, for every non-terminal sym-
bol all the alternate options are listed with their respec-
tive probabilities.
X → (Pr1)f1f2 ... fm

| (Pr2)s1s2 ... sm

A particular non-terminal node can only generate one
of the options. This implicit constraint of unique repre-
sentation among alternate options is captured using the
comma (,) symbol in the GenProb language and listing
the mutually exclusive options with their probabilities
in the same GenProb constraint. The internal weighted
constraint representation of a grounded GenProb con-
straint of this format is shown in Figure 2.

Start Symbol
The one node in the parse tree that does not have a
parent is the start node S. This constraint is captured
in the GenProb language by assigning a high prior value
to the object with the category of the start symbol and
its time of occurrence spanning over the entire length
of the input string I.
TRUE =⇒
IsA(?obj, S) ∧ Occur(?obj) ∧

Figure 2: Shows the underlying weighted constraints of
X → (Pr1)f1f2 ... fm | (Pr2)s1s2 ... sm

StartTime(?obj, Istrt) ∧ EndTime(?obj, Iend)

Mandatory Manifestation
All the leaf nodes in a parse tree have to be termi-
nals. This axiom ensures that every non-terminal in a
parse tree generates a string based on R, which we call
the mandatory manifestation of non-terminals. A parse
tree that does not satisfy the mandatory manifestation
constraint is an invalid tree.

This constraint of saying that among all the possi-
ble generations of a non-terminal at least one of them
should hold true is harder to capture. We have intro-
duced a corresponding AtleastOneEffect proposition for
every non-terminal node(Figure 1). The only causes for
the AtleastOneEffect proposition of a non-terminal are
the RHS components of the productions in R for this
particular non-terminal. Since GenProb language has
the built in causal tendency to falsify an event when all
its causes are false, the only reason for AtleastOneEf-
fect proposition to be true is if one of the productions
in R, the rule set of PCFG, has been generated.
Occur(?obj) ∧ NOT AtleastOneEffect(?obj)
=⇒ FALSE
Say there are 2 productions that can be generated from
a non-terminal X;
X → (0.75)a | (0.25)Y Z
The constraints that posit AtleastOneEffect of the non-
terminal X look like:

1.
Occur(?aobj) ∧ IsA(?aobj, a) ∧
StartTime(?aobj,?tStart) ∧
EndTime(?aobj, ?tEnd) ∧
Occur(?xobj) ∧ IsA(?xobj, X) ∧
StartTime(?xobj,?tStart) ∧
EndTime(?xobj, ?tEnd)
=⇒ AtleastOneEffect(?xobj)

2.
Occur(?yobj) ∧ IsA(?yobj, Y) ∧
StartTime(?yobj,?tStart) ∧
EndTime(?yobj, ?tMid1) ∧
ImmediatelyBefore(?tMid1, ?tMid2) ∧
Occur(?zobj) ∧ IsA(?zobj, Z) ∧
StartTime(?zobj,?tMid2) ∧
EndTime(?zobj, ?tEnd) ∧
Occur(?xobj) ∧ IsA(?xobj, X) ∧
StartTime(?xobj,?tStart) ∧
EndTime(?xobj, ?tEnd)
=⇒ AtleastOneEffect(?xobj)
Though the mandatory manifestation constraint en-
sures that there is no unexpanded non-terminal in the
tree, it is not guaranteed for the parse tree to end in
terminals. PCFG rules of the form X1→ X11 and X11
→ X1 can lead to an endless depth of the parse tree.

An Example of Interaction Enabled By
GenProb

The importance of representing syntactic grammar in
the same general formalism that also allows relational
representations and causal conditionals is that syntax
can now interact with other aspects of language like se-
mantics, background knowledge and visual perception.
For example, problems like part-of-speech tagging and
word sense disambiguation, which are conventionally
studied as isolated sub-problems, can be addressed by
this interaction of syntax and semantics.

In order to demonstrate an example, let us consider
the word “bug”. According to Wordnet, the word
“bug” has the coarse senses of the nouns insect
animal, system error and listening device, and also the
verbs annoy and eavesdrop in this order of frequency.
Given we have the corresponding frequency of these
senses(Probi), the following constraint can be added to
the system:
IsA(?word, Word) ∧ HasPhonology(?word, soundBug)
−→
(Prob1) HasWordSense(?word, animalBug),
(Prob2) HasWordSense(?word, systemErrorBug),
(Prob3) HasWordSense(?word, deviceBug),
(Prob4) HasWordSense(?word, annoyVerbBug),
(Prob5) HasWordSense(?word, evesdropVerbBug)

By default with no further information the most fre-
quent sense of the word is preferred. However, consider
the example sentence “The bug needs a battery”. In
this case, the bug refers to the noun listening device
because animals and abstract concepts like errors do
not require batteries, which say is available background
knowledge. As the sentence is parsed and semantics
is generated within the same framework, the generated
semantics that an animal needs battery or that an ab-
stract entity needs battery creates contradiction with
the background knowledge. Hence, the inference system
with this information concludes that the correct inter-
pretation of the word bug is the listening device. As

an illustration, we show how the required background
knowledge can be represented in GenProb.

IsA(?obj, Organic) =⇒ IsA(?obj, Physical)
IsA(?obj, Inorganic) =⇒ IsA(?obj, Physical)
IsA(?obj, Physical) =⇒ IsA(?obj, Entity)
IsA(?obj, Abstract) =⇒ IsA(?obj, Entity)
IsA(?obj, Abstract)
=⇒ NOT IsA(?obj, Physical)
IsA(?obj, Organic)
=⇒ NOT IsA(?obj, Inorganic)
NOT(?obj, Inorganic)
=⇒ NOT Need(?obj, battery)

Related Work
Logics over infinite domains have been characterized
(Milch et al., 2005, Singla & Domingos, 2007), but
to our knowledge no guaranteed inference algorithm
for these problems has thus far been published. Sev-
eral approaches try to generalize PCFG. Hierarchical
dirchilet process (Liang, Petrov et.all 2007) represent
infinite number of constraints. However, the present
approach is the only one to our knowledge that allows
exact inference (under review) and combines in logical
constraints which need not adhere to cyclicity condi-
tions. Finally, it is anticipated that jointly reasoning
over syntactic and semantic constraints in natural lan-
guage processing applications will require the kind of
relational language offered by the present approach.

Conclusion
PCFG is a general formalism that captures regulari-
ties in several domains, a behavior we would like from
AGI systems. However, PCFGs encode only certain
kinds of constraints. By translating PCFGs into a
more general probabilistic framework, joint reasoning
over PCFG and other constraints is possible. The con-
straints of PCFG have been identified and encoded in a
relational language that in addition to capturing causal
conditional probabilities can also represent (potentially
cyclic) boolean constraints.

An example application of this integration of PCFG
and probabilistic relational constraints is in the domain
of language understanding. Knowledge of linguistic
syntax encoded in PCFG can interact with the gen-
erated semantics of the sentence and also the world
knowledge encoded in the system to effectively solve
problems like lexical (or word sense) ambiguity. In
the future, we would like to integrate the constraints
of richer grammars like lexicalized grammars (Head-
driven Phrase Structure Grammar etc) with this gen-
eral representation.

References
Anonymous. (under review). Inference with Relational
Theories over Infinite Domains.

Cassimatis N.L. (2006). A Cognitive Substrate for
Human-Level Intelligence. AI Magazine. Volume 27

Number 2.
Charniak, E. (2000) A maximum-entropy-inspired

parser. In: Proc. NAACL. 132-139
Collins, M. (2003) Head-Driven Statistical Models for

Natural Language Parsing. Computational Linguistics,
29.

Moore, D. and Essa, I. (2002) Recognizing multi-
tasked activities from video using stochastic context-
free grammar. In Proceedings of AAAI-02.

Domingos, P., Kok, S., Poon, H., Richardson, M.,
and Singla, P. (2006) Unifying Logical and Statistical
AI. Paper presented at the AAAI-06.

Singla, P., and Domingos, P. (2007) Markov Logic
in Infinite Domains. Proceedings of the Twenty-Third
Conference on Uncertainty in Artificial Intelligence
(pp. 368-375). Vancouver, Canada: AUAI Press.

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong,
D. L., and Kolobov, A., 2005. ”Blog: Probabilis-
tic Models With Unknown Objects.” ”Proceedings of
the Nineteenth Joint Conference on Artificial Intelli-
gence.”

Ferguson, G., and J. Allen (2007). Mixed-Initiative
Dialogue Systems for Collaborative Problem-Solving.
AI Magazine 28(2):23-32. Special Issue on Mixed-
Initiative Assistants. AAAI Press.

Liang, P., Petrov, S., Jordan, M. I., and Klein, D.
(2007). The infinite PCFG using hierarchical Dirichlet
processes. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing.

Nam T. Nguyen, Hung H. Bui, Svetha Venkatesh,
and Geoff West. (2003) Recognising and monitoring
highlevel behaviours in complex spatial environments.
In Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR-03)

Pynadath, David V.; Wellman, Michael P. (2000)
Probabilistic state-dependent grammars for plan recog-
nition. In Proceedings of the conference on uncertainty
in artificial intelligence pp. 507-514

Percy Liang Slav Petrov Michael I. Jordan Dan Klein
The Infinite PCFG using Hierarchical Dirichlet. (2007)
Processes Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, pp. 688-
697, Prague, June 2007. c2007 Association for Compu-
tational Linguistics

Y. Sakakibara, M. Brown, R. C. Underwood, I. S.
Mian, and D. Haussler, ”Stochastic context-free gram-
mars for modeling RNA,” (2004) Proceedings of the
27th Annual Hawaii International Conference on Sys-
tem Sciences. Volume 5 : Biotechnology Computing, L.
Hunter, Ed. Los Alamitos, CA, USA: IEEE Computer
Society Press, pp. 284-294.

