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Abstract 

We show how a general-purpose cognitive architecture 
augmented with a general diagrammatic component can 
represent and reason about Large-scale Space. The 
diagrammatic component allows an agent built in this 
architecture to represent information both symbolically and 
diagrammatically as appropriate. Using examples we show 
(a) how the agent’s bimodal representation captures its 
knowledge about large-scale space as well as how it learns 
this information while problem solving and (b) the agent’s 
flexibility when it comes to using learned information and 
incorporating new information in solving problems 
involving large-scale space.   

Introduction  

An agent based on a general purpose cognitive architecture 
has the ability to work on a range of problems. Agents 
based on task-specific structures are usually restricted to 
particular task and problem domains. The advantages of 
task-specific knowledge such as faster solution times can 
however be realized in the general architecture case 
through the use of general-purpose learning mechanisms 
that account for the formation of task-specific knowledge 
from the general underlying representations. Newell has 
made a comprehensive case for the development of unified 
general architectures for solving the problem of general 
human cognition (Newell 1990). Soar (Laird, Newell et al. 
1987) and ACT-R (Anderson and Lebiere 1998) have been 
two of the architectures that have tried to rise to the 
challenge of generality. For our purposes it is not their 
differences that are important but what they share. Their 
central representational framework is symbolic, or more 
precisely, predicate-symbolic. In the predicate-symbolic 
view, the agent’s knowledge, goals etc are represented in 
terms of symbol structures that describe the world of 
interest in terms of properties of and relations between 
individuals in the world.  
 Cognitive models built in Soar and ACT-R have been 
very effective in showing how a general purpose cognitive 

architecture can produce task-optimal behavior, and how 
learning provides efficiencies over time and across tasks. 
However, work using these architectures has tended to 
focus more on certain kinds of tasks over others. Among 
the tasks that have received less attention are those that 
deal with the representation of and reasoning about large-
scale space. As it happens, for any given spatial reasoning 
task, a model builder can represent the task-specific spatial 
information symbolically, treating the extraction of such 
symbolic information to perceptual processes outside the 
architecture. On the other hand, it has been proposed that 
there are certain forms of perceptual representation that 
belong inside the cognitive architecture itself 
(Chandrasekaran 2002). In this paper, we demonstrate how 
an agent based on a general cognitive architecture, albeit 
one with an additional diagrammatic representation, can 
represent and reason about space. We further show the 
agent can learn during problem solving and show transfer 
of learning within and between tasks.  

Representing and Reasoning about Large-

Scale Space 

In 1948, (Tolman 1948) proposed that animals have an 
internal representation of large-scale space which he called 
the cognitive map. In 1960, (Lynch 1960) produced his 
seminal study of the environment in which he identified 
landmarks, routes, nodes, districts and edges as the 
features that are important in building a cognitive map. 
Since then there have been a number of models, both 
descriptive models without commitment to mechanisms, 
and computational models that propose mechanisms, 
which have been proposed to account for various 
phenomena associated with the representation of space 
(add refs). A variety of behavioral/psychological studies 
have also aided the development of these models by 
providing a set of characteristics or behaviors that a model 
should posses. Chief among them is the understanding that 



the cognitive map is less of a map and more of a collage 
(Tversky 1993). That is, representations of large-scale 
spaces are not holistic but stored in pieces and that these 
pieces are brought together as needed during problem 
solving. Such a representation allows the agent to be 
flexible with respect to representing inconsistent and 
incomplete information.  
 Knowledge of large-scale space can come from multiple 
sources. The most common, of course, being personal 
experience of navigation in space. We automatically build 
representations of our environment as we traverse them. A 
second, and important, source is maps. Our knowledge of 
large environments, such as the spatial extent and 
geographical locations of the fifty states of the USA, 
originated from our use of maps. Representations, 
originating from either source, are combined and modified 
in various ways and for various purposes during problem 
solving. In this paper, we focus on spatial reasoning tasks 
that involve an external map rather than the agent moving 
about in space. This is because biSoar, being built on Soar, 
is a theory of high-level cognition, and navigating in the 
world requires perception of the external world (as well as 
motor systems to act on it), capabilities which biSoar, and 
cognitive architectures in general, are not intended to 
capture. However, we believe our proposal can be suitably 
extended in the case when such abilities become available.  
 Generality comes at a price. Currently, biSoar agents 
cannot outperform more task-specific proposals for 
representing and reasoning about space. Instead, our focus 
in this paper is in showing how agents built in the biSoar 
architecture are flexible and versatile. Using examples we 
show how information about large-scale space can be 
represented in a piece-meal fashion in biSoar’s underlying 
bimodal representation.  We then show how an agent, 
during the course of problem solving, learns these pieces of 
information. We use two sets of examples to show biSoar’s 
flexibility and versatility. In the first one, we show how 
information learned by an agent in one task (route-finding) 
can be used to solve problems in a different but similar 
task (geographic recall). In the second example, we show 
how the agent can incorporate information from multiple 
sources during an episode of route-finding.   

biSoar  

To create biSoar (Kurup and Chandrasekaran 2006), a 
general-purpose cognitive architecture, Soar  was 
augmented with the Diagrammatic Reasoning System 
(DRS), a domain-independent system for representing 
diagrams (Chandrasekaran, Kurup et al. 2005). The 
diagrammatic component of the state, encoded in DRS, is 
part of the agent's internal representation, just as the 
predicate symbolic component is in an agent's state 
representation in current theories of cognitive architecture.  
The content can come from various sources, recall from 
memory, imagination by composing elements from 
memory, or from an external image of a diagrammatic 
representation.  DRS of an external diagram is an 

abstraction of the external diagram: regions in the image 
intended to be points are abstracted in DRS as points but 
with the same location of the intended point, regions 
intended to be curves are abstracted into the intended 
curves, symbolic annotations abstracted to symbols 
associated with the DRS element, and so on. The 
perceptual routines operate on the DRS elements, whether 
they were generated internally or from external 
representations.  Of course, creating a DRS corresponding 
to an external diagram requires image processing routines, 
such as those that do background subtraction or edge 
detection, to go from an image to a collection of objects 
with their spatial extents. Such external processing, 
however, is not part of the theory of the bimodal internal 
state, nor of the operation of the cognitive architecture.  In 
our examples that involve an agent interacting with an 
external map, we assume that such image processing 
routines are available to the agent and focus on how the 
result of these routines, the diagrammatic representation, is 
represented and manipulated in spatial reasoning tasks 
 While a physical diagram (on a screen or on paper) is an 
image that contains diagrammatic objects, each to be 
interpreted as a  point, curve or a region, the diagram is 
viewed as a configuration of diagrammatic objects. Note 
too that while in the physical diagram all the objects are 
regions, so that they can be perceived, DRS captures the 
intended diagram.  If an object in the physical diagram 
appears as a circle, in DRS it would be treated as a 
Euclidean point object with just location to characterize it. 
DRS is domain-independent – the only objects are points, 
curves or regions.  Interpreting them in domain terms is the 
job of the user of the representation.  The objects in DRS 
have associated with them information about their 
spatiality -- locations for point objects, and representations 
that are functionally equivalent to the sets of points that 
constitute the objects for curves and regions.  Associated 
with the DRS are a set of perception and diagram 
construction/modification capabilities; following (Ullman 
1984), these are called routines. All these routines are 
visual, but we use the more general term so that it will 
apply to the more general multi-modal view.  
 Perception Routines take diagrammatic elements as 
arguments and return information about specified spatial 
properties or spatial relations.  There are two types of 
perception routines: the ones in the first type re-perform 
the figure-ground separation on the image – rather than on 
the DRS – perceiving emergent objects (e.g., the two sub-
regions that emerge when a curve intersects a region.) 
Routines of the second type return specified spatial 
properties of objects, e.g., the length of a curve; and 
evaluate specified spatial relations between objects, e.g., 
Inside(Region1, Region2). These routines work from 
descriptions in DRS. DRS thus is an intermediate 
representation that supports reconstituting the image, a 
capability needed for emergent object identification, and 
also the perceptual routines that perceive properties of and 
relations between objects. 



 Routines that help in constructing or modifying the 
diagram are action routines.  They create diagrammatic 
objects that satisfy specific perceptual criteria, such as “a 
curve object that intersects a given region object,” and “a 
point object inside the region object.” The sets of routines 
are open-ended, but routines that are useful across a 
number of domains are described in (Chandrasekaran, 
Kurup et al. 2004), which also contain more information 
on DRS.  

Cognitive State in Soar 

Soar’s representations are predicate-symbolic. The 
cognitive state in Soar is represented by the contents of 
Soar’s WM and operator, if any, that has been selected. Fig 
1(b) shows Soar’s cognitive state representation of the 
blocks world example in 1(a). 

Cognitive State in biSoar 

The cognitive state in biSoar is bimodal – it has both 
symbolic and diagrammatic parts. Fig 2 shows the bimodal 
representation of the world depicted in Fig 1(a). Working 
memory in biSoar is represented as a quadruplet, with each 
Identifier, Attribute, Value triplet augmented with a 
diagrammatic component in DRS that represents the 
visualization (metrical aspect) of the triplet. Since not all 
triplets need to be (or can be) visualized, the diagrammatic 
components are present only as needed. States represent 
the current or potential future state of interest in the world 
and the symbolic and the diagrammatic part may represent 
related or distinct aspects of the world. However, the 
diagrammatic representation is “complete” in a way that 
the symbolic representation is not. For example, from the 
symbolic representation alone it is not possible to say 
without further inference whether A is above C. But the 
same information is available for pick up in the diagram 
with no extra inference required. This has advantages (for 
instance in dealing with certain aspects of the Frame 
Problem) and disadvantages (over-specificity). 

Bimodal LTM and Chunking 

There are two questions that have to be answered in an 
implementation of Long Term Memory (LTM) – how are 
elements put into LTM (i.e., learned) and how are elements 
retrieved from LTM. In the case of Soar the answers to 
these two questions are chunking for learning and a 
matching process that matches the LHS of a LTM rule to 
WM for retrieval. 
Chunking - Chunking simply transfers the relevant 
contents of WM to LTM. In the case of biSoar, chunking 
transfers to LTM both symbolic and diagrammatic 
elements present in WM. 
Matching - In the case of Soar the retrieval process is 
straightforward because matching (or even partial 
matching when variables are present) symbols and symbol 
structures to each other is an exact process; either they 
match or they don’t.  When the cognitive state is bimodal, 
WM has metrical elements in addition to symbols. 
Matching metrical elements to each other (say a curve to 
another curve) is not an exact process since two metrical 
elements are unlikely to be exactly the same. Matching 
metrical elements would require a different approach like a 
non-exact process that can match roughly similar elements 
in a domain-independent manner (since the matching 
should be architectural). It may also turn out that only calls 
to perceptual routines are present in LTM while matching 
metrical elements is a more low-level cognitive process 
present only in stimulus-response behavior. For now we 
take the latter approach where the LHS of biSoar rules 
contain only symbol structures while the RHS contains 
calls to the diagram that execute perceptual routines. The 
results of executing these routines appear as symbol 
structures in the symbolic side at the end of a decision 
cycle. We think that this approach can account for many of 
the diagrammatic learning capabilities that are required in 
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Figure 2: biSoar representation of the world shown in 1(a) 
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Figure 3: (a) A map of main highways in Columbus, OH 

showing routes R1...R5 and locations P1...P4. Intersections 

of routes also form additional locations. (b) The DRS 

representation of the route from R2R5 to P2 
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Figure 1: (a)  Blocks World and (b) Soar’s representation 

of the world in (a). 



models of cognition except in cases where goal 
specifications contain irreducible spatial components, such 
as might be the case in  the problem solving of a sculptor.  

Representing Large-Scale Space in BiSoar  

Soar’s LTM is in the form of rules. Each rule can be 
thought of as an if-then statement where the condition (if) 
part of the rule matches against the existing conditions in 
WM and the action (then) part of the rule describes the 
changes to be made to WM. Thus, Soar’s LTM is arranged 
to respond to situations (goals) that arise as part of problem 
solving. This makes sense because, ideally, a majority of 
an agent’s rules are learned as part of problem solving and 
hence in response to a particular situation. If the situation 
(or a similar one) arises in the future, Soar can now use this 
learned rule in response. For the route-finding scenario, the 
agent has knowledge about various locations on the map 
and about routes between these locations, presumably as a 
result of learning from previous problem solving episodes. 
The agent’s knowledge of the area consists of bimodal 
rules  in the following form: 
 
If goal is find_destination and at location A and traveling 
in direction Dx on route Rx, then destination is location B, 

diagram is DRSx 
 
Where DRSx represents the spatial extent of the section of 
the route that runs from Lx to Ly along route Rx and is 
represented using DRS. So, for example, for the map in Fig 
3(a), the spatial relationship between locations R2R5 and 
P2 would be expressed as  
 
If goal is find_destination and at R2R5 and traveling Right 

on Route R2, then destination is P2, diagram is DRS1 
 
Where DRS1 is shown in Fig 3(b).   The directions 
available are Right, Left, Up and Down  though this choice 
of directions is arbitrary. For convenience, we represent the 
above information in a more concise form as follows: 
 

Gx,Lx,Dx,Rx � Ly,DRSx 
 

Route-finding & Learning Using BiSoar 

 We created an agent to perform route-finding tasks given a 
map using the simple strategy shown in Fig 4. The agent 
finds a route by locating the starting and destination points 
and finds a path by moving to the next point on the route 
that is the closest to the destination using a simple 
Euclidean distance measure. Some of the steps of the 
algorithm require information from the diagrammatic 
component. This information is of two types - in certain 
cases it is symbolic, such as the answer to the query “On 
what route(s) is the point located?” while in other cases, 
the information is diagrammatic, like for the question 
“What’s the route between the point P1 and R1R3?”  
 Each step of the algorithm is implemented such that it 
becomes a sub-goal for the biSoar agent. As a result, when 
the agent solves a sub-goal, the architecture automatically 
learns a chunk (rule) that captures the solution to the task. 
For example, corresponding to step 5 of the algorithm, the 
agent finds that if you move down from P1 along route R1, 
you reach R1R3. The next time the agent is faced with this 
sub-goal, the chunk that was learned is used to answer it.  
Fig 5(a) shows the path found by the agent from P1 to P2. 
Table 1 shows the information learned by the agent as a 
result of that task. Fig 5(b) similarly shows the result of 
route-finding by the agent between the locations P4 and 
R3R5 and Table 2, the information learned by the agent 
Within-task Transfer – To show within-task transfer of 
learning, we ran the agent on route-finding tasks with an 
external map. As a result of learning, the agent acquired a 
number of chunks. The external map was then removed 
and the agent was giving a new route-finding task, one in 

Figure 4: The wayfinding strategy used by the biSoar agent 

1. locate the starting & destination locations in the map 

2. make the starting location the current location 

3. Find the routes on which the current location lies 

4. For each route, find the directions of travel 

5. for each route and direction of travel, find the next 

location  

6. calculate the Euclidean distance between these new 

locations and the destinations 

7. pick the location that is closest to the destination and 

make that the current point 

8. repeat 3-8 until destination is reached 

Figure 5: Routes found by the agent from (a) P1 

to P2 b) P4 to R3R5 and (c) R1R4 to P2 

(a) 

(b) 

(c) 



which the starting and destination points were present in 
the previous tasks but never as a pair between which a 
route had to be found. For example, with the external map 
available, the agent was asked to find routes from P1 to P2 
and from P4 to R3R5. The external map was then removed 
and the agent was asked to find a route from R1R4 to P2. 
The agent using information learned during the previous 
two tasks (Tables 1 & 2), found the route in Fig 5(c). 

Gon,P1 � R1  

Gon,R1R3 � R1,R3  

Gon,R1R2 � R1,R2  

Gon,R2R4 � R2,R4  

Gon,R2R5 � R2,R5  

Gdir,P1,R1 � up,down   

Gdir,R1R3,R1 � up,down  

Gdir,R1R2,R2 � right,left  

Gdir,R2R4,R2 � right, left  

Gdir,R2R5,R2 � right,left  

Gdest,P1,R1,down � R1R3 

 

Gdest,R1R3,R1,down � 

R1R2 

 
Gdest,R1R2,R2,right � 

R2R4  
Gdest,R2R4,R2,right � 

R2R5  

Gdest,R2R5,R2,right � P2 

 

. 
Between-task Transfer – To show between-task transfer, 
we had an agent trained on one type of task (route-finding) 
perform a different spatial task (geographic recall). As an 
example, the agent in the within-task transfer example, 
with the knowledge in tables 1 and 2, was asked to find the 
geographic relationship between two points that it had 
encountered during the tasks. The agent’s strategy was to 
recreate (not just recall) the map using the learned 
information, and extract the relationship between the 
locations from the re-created map. Fig 6 shows the map 
created by the agent. 
  

Predicting Paths – To show how the agent can incorporate 
information from multiple sources, we gave the biSoar 
agent an incomplete version of the earlier map (as shown 
in Fig 7) with route R5 missing. The agent was also given 
the symbolic information that there is a path from R2R5 in 
the up direction, but because the diagram was incomplete it 
is not clear what the destination of traveling along that 
route is. The goal of the agent was to find a route from P2 
to P3 taking into account possible paths. Fig 8 shows the 
route found by the agent. The strategy shown in Fig 4 is 
slightly modified so that the agent makes predictions about 
destinations. In step 5 of the strategy, when the agent 
checks the external representation to find the destination 
from R2R5 on R5 in the “up” direction, it finds that the 
information is not available in the map. In response, the 
agent creates a straight line path from R2R5 in that 

direction and sees that it intersects R3. It names this point 
INT1 and proposes a route that goes through INT1. 
Comparing the map in Fig 3(a) and the route found in Fig 

Gon,P4 � R1  

Gon,R1R4 � R1,R4  

Gdir,P4,R1 � left,right  

Gdir,R1R4,R4 � up  

Gdir,R2R5,R5 � up  

Gdest,P4,R1,right � R1R4 

 

Gdest,R1R4,up � R2R4 

 

Gdest,R2R5,up � R3R5 

 

Table 1: rules learned by the agent in finding the route 

from P1 to P2 

Table 2: rules learned by the agent in finding the route 

from P4 to R3R5 

Figure 6: Map created by the agent for 

geographic recall 



7(b), we can see that the straight line assumption by the 
agent results in a slightly different route R5 than what 
would have been found using the complete map.  

Conclusion  

Representations of large-scale space in general purpose 
architectures are usually limited to topological graph-like 
representations due to constraints imposed by the 
underlying predicate-symbolic representation. Reasoning, 
most commonly route-finding, then proceeds via the 
application of a graph-traversal algorithm. In our bimodal 
architecture, biSoar, large-scale space is represented using 
both symbolic and diagrammatic representations. This 
bimodal representation provides a richer representational 
format that can be used to solve a wider range of spatial 
reasoning tasks. At the same time, the diagrammatic 
representations are not specific to large-scale space but part 
of a more general approach to understanding cognition as 
multi-modal. In the case of large-scale space reasoning, 
such an approach has the following benefits. First, it 
captures not only the topological but also the metrical 
aspects of space. Depending on the task, either or both of 
the representations can be used to solve the problem. 
Second, an agent in this architecture can learn both 
symbolic and diagrammatic elements via chunking. This 
information can then be used to solve similar and related 
tasks. Third, the agent’s representation of the space is not 
holistic in nature. Instead it is spread over a number of 
rules and smaller diagrammatic pieces. This allows the 
agent to function under the presence of inconsistencies as 
well as include information from multiple sources during 

problem solving. The lack of a consistent single 
representation also makes it easier for the agent since it 
does not have to maintain consistency as new information 
comes in. In these respects, the agent’s representation is 
similar to human spatial representation. Lastly, the 
presence of a metrical representation allows the agent to 
reason about space in a way that topological 
representations cannot, namely, in predicting destinations 
of paths or finding shortcuts or novel paths.  
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