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Abstract 

Cognitive architectures aspire for generality both in terms of 
problem solving and learning across a range of problems, 
yet to date few examples of domain independent learning 
has been demonstrated.  In contrast, constraint programming 
often utilizes the same domain independent heuristics to 
find efficient solutions across a broad range of problems 
types.  This paper provides a progress report on how a 
specific form of constraint-based reasoning, namely 
Constrained Heuristic Search (CHS) can be effectively 
introduced into an integrated symbolic cognitive 
architecture (Soar) to achieve domain independent learning.  
The integration of CHS into Soar retains the underlying 
problem-solving generality of Soar, yet exploits the 
generalized problem representation and solving techniques 
associated with constraint programming.  Preliminary 
experiments are conducted on two problems types: Map 
Colouring and Job Shop Scheduling, both of which are used 
to demonstrate a domain independent learning using texture 
based measures.   

Introduction   

Cognitive architectures specify the underlying infra-
structure of tightly coupled mechanisms that support the 
acquisition and use of knowledge.  They aspire to 
demonstrate problem-solving capabilities ranging from 
solving highly routine to more difficult problems using 
large bodies of diverse knowledge [Laird, 2008].  Research 
on cognitive architectures is important because it supports 
a central goal of artificial intelligence - namely the creation 
and understanding of artificial agents that demonstrate 
similar problem-solving capabilities to humans [Langley 
et. al., 2006].  While AI research over the past two decades 
has successfully pursued specialized algorithms for 
specific problems, cognitive architectures aim for breadth 
of coverage across a diverse set of tasks and domains 
[Laird, 2008].  
 
However, to date there appears to be few examples of 
effective problem-solving or domain independent learning 
on realistic problems by symbolic cognitive architectures  
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[Diaper, et. al, 2007].  In contrast, Constraint Programming 
(CP) has for years established its ability to find efficient 
solutions to a broad domain of specific real-world 
problems using domain independent heuristics [Wallace, 
1996].  CP, however, has not generally promoted itself as 
the central problem-solving approach or learning 
framework for cognitive architectures. 
 
Symbolic cognitive architectures often employ rule-based 
deductive reasoning to encode knowledge and guide 
problem solving and learning. Often the division between 
problem representation and problem solving is often co-
mingled resulting in agents that can only solve a specific 
problem type and often preclude any form of domain 
independent learning.  In contrast, constraint programming 
employs a different, yet complementary form of deductive 
reasoning based on a generalized problem representation 
which allows it to utilize generic problem solving 
techniques such as constraint propagation.  
 
Our work seeks to integrate these two different problem-
solving paradigms

1
 (constraint and rule-based reasoning) 

into a unified, declarative architecture; namely to introduce 
Constrained Heuristic Search (CHS) [Fox et. al, 1989] to 
the Soar cognitive architecture [Laird et. al, 1987].  This 
paper reports progress to date demonstrating a specific 
form of domain independent learning.  Our broader 
research effort posits that CHS can provide the requisite 
framework for unifying the features of constraint 
programming and symbolic cognitive architectures in order 
to demonstrate practical problem solving performance and 
domain independent learning with cognitive architectures.   

Soar Cognitive Architecture   

 One of the earliest symbolic cognitive architectures 
developed was Soar, created by John Laird, Allen Newell, 
and Paul Rosenbloom at Carnegie Mellon University 
[Laird et. al. 1987].  Soar is a symbolic architecture for 
general intelligence that integrates basic mechanisms for 
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problem solving, use of knowledge, learning, and 
perceptual-motor behaviour [Laird et al., 1987]. 
 
Soar consists of a single long-term memory encoded as 
production rules and a single transient declarative working 
memory.  All long-term knowledge in Soar is represented 
as if-then rules, called productions or production rules. 
Soar’s symbolic working memory holds the agent’s 
assessment of the current situation derived from perception 
and retrieval of knowledge from its long-term memory 
[Laird, et. al. 1987].  Working and long-term memories are 
linked through a decision cycle which selects operators to 
change states and detects impasses.  Problem solving is 
driven by the act of selecting problem spaces, states, and 
operators in which each selection is accomplished through 
a three-phase decision cycle.  The phases are repeated until 
the goal of the current task has been achieved.  Chunking is 
Soar’s learning mechanism that converts the results of 
problem solving in subgoals into rules.  

Constraint Programming 

Independently, yet in close chronological parallel to the 
problem-solving work of Newell and Simon, an alternative 
problem-solving approach evolved called Constraint 
Programming (CP).  Constraint satisfaction is a sub-
domain of constraint programming dealing with problems 
defined over a finite domain and involve no objective 
function.  More formally, a Constraint Satisfaction 
Problem (CSP) is defined as a set of variables; for each 
variable, a finite set of possible values (its domain), and a 
set of constraints restricting the values that the variables 
can simultaneously assume [Kumar, 1992].  Variables are 
linked by constraints that can be either logical (i.e. X ≤ Y) 
or symbolic (i.e. X Loves Y).  
 
The principal techniques utilized to solve a CSP include a 
combination of constraint propagation, variable and value 
ordering and search.  Constraint propagation is the term for 
propagating the implications of a constraint on one variable 
onto other variables [Kumar, 1992].  The objective of 
propagation is to reduce the size of the variable domains 
based on the constraints imposed on them. Variable and 
value ordering heuristics can be utilized to dramatically 
improve the efficiency of search and suggest which 
variable should be assigned next and in what order the 
values should be tried [Kumar, 1992].  The role of 
constraints in problem solving has been reviewed by Fox, 
where he notes constraints can provide structure to search 
thereby reducing the size of the search space [Fox, 1986]. 
 
Constrained Heuristic Search The idea of augmenting 
the definition of the problem space through the 
introduction of a constraint graph representation is 
encompassed in the Constrained Heuristic Search (CHS) 
problem-solving model developed by Fox [Fox et. al., 
1989].  CHS is a combination of constraint satisfaction and 
heuristic search.  In this model, search is performed in the 
problem space where each state is defined by a problem 

topology and is represented as a constraint graph.  CHS 
augments the definition of a problem space by refining a 
state to include problem topology (structure), textures 
(measures of structure) and objective (rating alternative 
solutions) [Fox, 1989].  

Related Work 

In a prototype system called CRIPS, Liu demonstrated how 
constraint and rule-based reasoning can be integrated into a 
hybrid problem-solving paradigm to deal with the problem 
of representing disjunctions in rule-based systems [Liu, 
1994].  Specifically, the disjunctions are represented as 
constraint variables and their domains and the relations 
among disjunctions are represented as constraints.  Our 
work extends this effort by integrating a more general form 
of constraint based reasoning into an integrated rule-based 
cognitive architecture.   
 
A hybrid learning system was developed for automating 
the acquisition of problem-solving knowledge using CSP 
approaches [Subramanian, Freuder, 1990].  The technique 
proposed compiles production rules from the observation 
of constraint-based problem solving behaviour.  The 
compiled rules corresponded to the values deleted by the 
constraint-based problem solving.  In contrast to the work 
of Subramanian and Freuder, our research proposes to 
utilize Soar’s learning ability to encode texture-based 
problem independent heuristics as learned rules. 
 
The Adaptive Constraint Engine (ACE) is described as 
“cognitively oriented” architecture that can learn from 
experience solving problems in the CSP domain [Epstein, 
et. al., 2002].  ACE is built upon an underlying general 
problem solving and learning architecture called FORR 
(FOr the Right Reasons) which represents knowledge as a 
three-tiered hierarchy of procedures or “advisors.”   
 
Varieties of learning within Soar have been extensively 
investigated, including across different tasks, and the types 
it has not yet exhibited include: vary large problems; 
complex analogies; similarity-based generalization; and, 
representational shifts [Steier, et. al, 1987].  Our work 
seeks to reason over a much more abstracted problem 
space thereby producing more generalized chunks 
applicable to a much broader range of problem domains. 

Design of CHS-Soar 

There are two central, yet inter-related design goals of 
CHS-Soar.  First is the use of domain independent problem 
solving techniques and the second is domain independent 
learning.  Specifically, CHS introduces a standard CSP 
problem representation which encompasses the use of 
variables, which have a domain of discrete values, and 
constraints between variables.  CHS also allows us to 
introduce general purpose problem solving techniques such 



as propagation and the use of domain independent problem 
structure textures to guide variable and value selection.  
The second design goal is to focus Soar’s internal 
reasoning on the selection of textures measures to facilitate 
the learning of domain independent problem solving rules 
ideally useful across different problem types. 
Architecturally (Figure 1) CHS-Soar is composed of three 
parts: [1] the Soar kernel; [2] Soar agent (production 
rules); and, [3] the external agent.  A more detailed 
overview of the design of CHS-Soar is provided by Bittle 
and Fox [Bittle, Fox, 2008]. 

Soar Kernel 

The Soar kernel is invariant and encompasses a fixed set of 
computational mechanisms including: working memory 
(state representation); long term memory (repository for 
production rules); decision cycle (used to link working and 
long term memory); and, learning system.  

Soar Agent (Production Rules) 

Production rules provide the “programming language” for 
developers to create different Soar programs, called agents, 
and form the content of Soar’s Long Term Memory.  
Soar’s general problem-solving ability results from the fact 
that the same architecture (the Soar kernel) can be used to 
solve different problems as defined by different sets of 
production rules.  Rules are used to; propose, select and 
apply operators.   

 

Operators perform actions and are consequently the locus 
of decision making [Laird et. al, 1987].  CHS-Soar 
operators are focused on variable and value texture 
measure selection.  CHS-Soar operators provide the 
framework to introduce the CHS problem solving cycle. 
 
CHS-Soar Problem Solving Cycle Soar’s three-phase 
decision cycle (proposal, decision, and apply) provides a 
suitable framework to introduce the CHS problem solving 
cycle summarized in Table 1. 
 

Table 1:  CHS Problem Solving Cycle 
Repeat 

1 Conduct propagation (or backtrack) within state  

• calculate variable texture measures 
2 Select variable (based on heuristics as suggested by 

textures measures) 

• calculate value texture measures 
3 Select value (based on heuristics as suggested by 

textures measures) 
Until (all variables values instantiated & all constraints satisfied) 

 
As depicted in Figure 2, three Soar decision cycles are 
performed during one CHS cycle.  Instrumental to the 
learning of domain independent problem-solving rules is 
the requirement to have the Soar agent component of the 
CHS cycle only reason about the selection of normalized 
variable and value textures measures — not actual problem 
variable and values.  Consequently the Soar agent is 
decoupled from the actual problem constraint graph.  The 
Soar agent interacts with the external agent via production 
action-side function calls. 

External Agent 

The external agent is an optional user-defined program 
where Soar agent production rule functions reside.  From 
the external agent we can register new functions which can 
extend the functionality of Soar agent productions.  The 
CHS external agent provides five functions including: CSP 
problem representation (binary constraint graph); 
constraint propagation using the AC-3 algorithm 
[Mackworth, 1977]; chronological backtracking; and, 
variable and value texture calculations.  
 
Texture Measures Textures are structural measures of the 
constraint graph used to guide the order of variable and 
value selection [Fox et. al., 1989].  In order to demonstrate 
the future introduction of more insightful texture measures 
[Fox, 1990], three frequently cited [Kumar, 1992] variable 
and value ordering measures (and their associated 
heuristics) are utilized as outlined in Table 2.  
 

Table 2:  Texture Measures and Associated Heuristics 

Name Texture Measures Heuristics 

Minimum 
Remaining 
Value (MRV) 

Di, Number of remaining 
values in domain. 

Select the variable 
with the smallest Di, 
value  

Degree 
(DEG)  

Ci, number of constraints 
linked to variable. 

Select the variable 
with the largest Ci 
value  

Least 
Constraining 
Value (LCV) 

Fi, number of available 
values in domain of linked 
variables not instantiated. 

Select the value 
with the largest Fi 
value  

 

Figure 2: CHS-Soar Problem Solving Cycle 

Figure 1: CHS-Soar Architecture 



Of particular note is the separation of the texture measure 
from its associated unary heuristic.  In order to facilitate 
learning across different problem sizes and more 
importantly different problem domains, texture measures 
are normalized between 0 (minimum value) and 1 
(maximum value).  A “pruned” (duplicate values removed) 
list of normalized texture measures are returned to the Soar 
agent.  Pruning has the effect of further decoupling the 
texture measures from any specific problem domain. 

Soar and External Agent State Representation 

The Soar agent initially establishes a binary constraint 
graph in Soar’s working memory.  Once problem solving 
begins, the Soar agent state representation is defined by the 
CHS phase (i.e. select variable), state status, desired state, 
and the collection of normalized texture measures.  In 
contrast, the external agent maintains a complete binary 
constraint graph problem representation. 

Subgoaling and Learning 

Planning in Soar arises out of its impasse detection and 
substate creation mechanism.  Soar automatically creates a 
subgoal whenever the preferences are insufficient for the 
decision procedure to select an operator [Laird, et. al, 
1987].  Soar includes a set of default production rules that 
allow subgoaling to be performed using a simple look-
ahead search which CHS-Soar utilizes to evaluate variable 
and value texture measure performance.  After 
propagation, the Soar agent has no prior knowledge of 
which variable and/or value texture measure to select 
(assuming no previous learning). Soar will detect an 
impasse and automatically subgoal to evaluate each texture 
measure returned and now cast as operators.     
 
Texture Measure Evaluation CHS-Soar uses three 
separate, yet related texture measure evaluations.  The first 
is a simple numerical evaluation which gives a higher 
preference to the texture measure that requires fewer 
propagation cycles to achieve a candidate solution.  
Second, if a texture measure leads to a substate domain 
blow-out it is symbolically evaluated as a failure and 
rejected.  Third, if we cannot match a texture measure in 
the substate (i.e. an updated constraint graph is generated 
that does not include the texture measure under evaluation) 
the texture measure is symbolically evaluated as a “partial 
failure.”   
 
Since CHS requires both variable and value selections to 
advance a solution, in order to facilitate the evaluation of 
any substate variable texture measure we are required to 
make some type of value texture measure commitment 
leading to a variable – value texture measure pairing.  The 
approach utilized is to allow Soar to further subgoal (i.e. a 
sub-subgoal) about value texture selection based on the 
value texture measures generated for each variable texture 
measure under consideration.  Within each sub-substate, 

the variable — value pairing is held constant and a 
“candidate” solution is attempted. 
 
The second design goal of CHS-Soar is the learning of 
domain independent problem solving rules — specifically 
rules that can be transferred and effectively used on 
different problem types.  Chunks are created in the CHS-
Soar agent as we resolve impasses.  Resulting chunks have 
as their conditions either unary or binary conditions 
composed of texture measures (cast as operators).     

Implementation of CHS-Soar 

The CHS-Soar agent was developed using Soar version 
8.6.3 (Windows versions).  The external agent was 
developed in C++ using Windows Visual Studio 2005. 

Experiments 

The paper reports on two selected computational 
experiments performed to-date.  The objective of 
experiment 1 is to establish the subgoaling, learning and 
transfer of learning ability of CHS-Soar.  Experiment 2 
considered the impact of problem size/complexity on the 
performance of externally learned chunks.  Problem 
instances were run 10 times and averaged.  Experiments 
were conducted for two sample problems: [1] map 
colouring (MC); [2] job-shop scheduling (JSS), both well 
known combinatorial problems.  The relationship of the 
map colouring problem and the more formal four-colour 
problem to general intelligence is highlighted by Swart 
[Swart, 1980] who notes one of the main attractions of the 
problem lies in the fact that it is “so simple to state that a 
child can understand it.”  The JSS problem instance is 
taken from [Pang, et. al, 2000]. Results are presented in 
terms of “Decisions (cycles)” — the basic unit of 
reasoning effort in Soar (see Figure 2). 

Experiment 1: Learning and Transfer of Learning 

The first experiment investigated the impact of subgoaling, 
internal learning and the transfer of externally learned rules 
between problem types.  In order to assess the performance 
of an external set of learned chunks on the map colouring 
problem, the chunks acquired through internal learning 
from the JSS problem were introduced for test case 4 (see 
Table 3) and vise versa for the JSS.   
 

Table 3: Learning and Transfer of Learning Test Cases 

Ref Test Case Description 

1 Random Random selection of variable and value 

texture measures (indifferent).   

2 Hard-

Coded 

Explicitly coded MRV, DEG variable selection 

heuristics and LCV value selection heuristic. 

3 Internal Problem is run using internally acquired 

chunks.   

4 External Problem is run using externally acquired 

chunks from different problem domain.   



Results and Discussion 

Figure 3 presents the number of decisions required to solve 
the CHS-Soar model of a map colouring problem (11 
variables and 23 constraints) for the test cases outlined in 
Table 3.  As highlighted the hard-coded variable and value 
texture selection heuristics (case 2) result in a lower 
number of decisions (41% reduction) then when using a 

random selection of texture measures (case 1). When 
subgoaling and learning were enabled (case not shown), 
CHS-Soar generated on average 60 chunks. Case 3 
demonstrates improved problem solving using the 60 
internally acquired learned rules as compared to the 
explicit use of hard-coded heuristics (case 2) resulting in a 
21% reduction in decision cycles.  For case 3 it was 
observed that CHS-Soar used both a combination and 
range of variable and value texture measure types and 
values to secure a solution.  
 
Case 4 demonstrates the domain independent problem 
solving performance of CHS-Soar chunks using 177 
chunks externally learned from the JJS problem.  Case 4 
resulted in a 16% reduction in decision cycles over case 2 
(hard-coded heuristics).  Yet for case 4 we observe a 6% 
increase in decision cycles as compared case 3 (internal 
learned chunks).     
 
Figure 4 presents the number of decision cycles required to 
solve the CHS-Soar model of a 3x5 Job-Shop Schedule 
(JSS) problem (15 variables and 35 constraints) for the test 
cases outlined in Table 3.  Similar to the map colouring 
problem instance, we can observe a reduction in decision 
cycles (29% lower) using hard coded heuristics (case 2) 
over the random selection (case 1). Subgoaling and 
learning (one training run) resulted in 177 internally 
learned chunks.  We note a 23% reduction in decision 
cycles when the problem is solved using internally learned 
rules (case 3) as compared with the explicit use of hard 
coded heuristics (case 2). Case 4 illustrates the impact of 
using 60 externally learned rules acquired from the map 
colouring problem.  Case 4 shows a 10% reduction in the 
number of decision cycles as compared to case 2 (hard 
coded).   

Experiment 2: Scalability 

The second experiment explored the performance of 
externally learned chunks as a function of problem 
complexity for the map colouring problem.  Specifically, 
the 177 learned chunks from the job-shop scheduling 
problem (3x5) were introduced into progressively larger 
map colouring problems ranging in size from 7 variables (9 
constraints) to 44 variables (103 constraints). 

Results and Discussion 

Figure 5 presents a comparison of decisions cycles for 3 
selected test cases (see Table 3 as a function of problem 
complexity for the map colouring problem.  For case 5, the 
177 externally learned chunks from the 3x5 JJS problem 
were introduced to solve each MC problem instance.   

 
 As illustrated for this specific problem series, the 
externally acquired learned rules demonstrate similar 
problem solving performance, to both the hard-coded 
heuristics and internally generated chunks as problem 
complexity increases.  
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Figure 3: Map Colouring-Decisions as a Function of 

Subgoaling/Learning Test Cases. 
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Figure 4: JSS-Decisions as a Function of 

Subgoaling/Learning Test Cases. 
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Figure 5: Map Colouring-Comparison of Decisions 

versus Problem Complexity for Selected Test Cases. 



Conclusions and Future Work 

While preliminary, work to date has demonstrated how a 
specific form of constraint-based reasoning (CHS) can be 
effectively introduced into a symbolic cognitive 
architecture (Soar) using a generalized set of 34 
productions.  This results in an integration of two 
important types of reasoning techniques, namely constraint 
propagation and rule chaining.   
 
We have demonstrated the ability of CHS-Soar to learn 
rules while solving one problem type (i.e., graph 
colouring) that can be successfully applied in solving 
another problem type (i.e., Job Shop Scheduling).  CHS 
and specifically the use of texture measures allow us to 
transform a problem specific search space (based on 
variables and values) into a more generalized one based on 
abstracted texture measures which provides the 
environment to achieve domain independent learning.     
 
Future work will include an expanded portfolio of test case 
problems to further validate and better understand CHS-
Soar ability to learn and use domain independent texture 
based rules for more practical problems.  More insightful 
texture measures, support augmentation (i.e. frequency) 
and improved texture evaluation functions are also being 
investigated as well as a texture based “discovery system.”   
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