
CHS-Soar: Introducing Constrained Heuristic Search
to the Soar Cognitive Architecture

Sean A. Bittle
1
, Mark S. Fox

2

Department of Mechanical and Industrial Engineering, University of Toronto,

King’s College Road, Toronto, Ontario, Canada, M5S 3G9

sean.bittle@utoronto.ca
1
, msf@mie.utoronto.ca

2

Abstract

Cognitive architectures aspire for generality both in terms of
problem solving and learning across a range of problems,
yet to date few examples of domain independent learning
has been demonstrated. In contrast, constraint programming
often utilizes the same domain independent heuristics to
find efficient solutions across a broad range of problems
types. This paper provides a progress report on how a
specific form of constraint-based reasoning, namely
Constrained Heuristic Search (CHS) can be effectively
introduced into an integrated symbolic cognitive
architecture (Soar) to achieve domain independent learning.
The integration of CHS into Soar retains the underlying
problem-solving generality of Soar, yet exploits the
generalized problem representation and solving techniques
associated with constraint programming. Preliminary
experiments are conducted on two problems types: Map
Colouring and Job Shop Scheduling, both of which are used
to demonstrate a domain independent learning using texture
based measures.

Introduction

Cognitive architectures specify the underlying infra-
structure of tightly coupled mechanisms that support the
acquisition and use of knowledge. They aspire to
demonstrate problem-solving capabilities ranging from
solving highly routine to more difficult problems using
large bodies of diverse knowledge [Laird, 2008]. Research
on cognitive architectures is important because it supports
a central goal of artificial intelligence - namely the creation
and understanding of artificial agents that demonstrate
similar problem-solving capabilities to humans [Langley
et. al., 2006]. While AI research over the past two decades
has successfully pursued specialized algorithms for
specific problems, cognitive architectures aim for breadth
of coverage across a diverse set of tasks and domains
[Laird, 2008].

However, to date there appears to be few examples of
effective problem-solving or domain independent learning
on realistic problems by symbolic cognitive architectures

Copyright © 2008, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

[Diaper, et. al, 2007]. In contrast, Constraint Programming
(CP) has for years established its ability to find efficient
solutions to a broad domain of specific real-world
problems using domain independent heuristics [Wallace,
1996]. CP, however, has not generally promoted itself as
the central problem-solving approach or learning
framework for cognitive architectures.

Symbolic cognitive architectures often employ rule-based
deductive reasoning to encode knowledge and guide
problem solving and learning. Often the division between
problem representation and problem solving is often co-
mingled resulting in agents that can only solve a specific
problem type and often preclude any form of domain
independent learning. In contrast, constraint programming
employs a different, yet complementary form of deductive
reasoning based on a generalized problem representation
which allows it to utilize generic problem solving
techniques such as constraint propagation.

Our work seeks to integrate these two different problem-
solving paradigms

1
 (constraint and rule-based reasoning)

into a unified, declarative architecture; namely to introduce
Constrained Heuristic Search (CHS) [Fox et. al, 1989] to
the Soar cognitive architecture [Laird et. al, 1987]. This
paper reports progress to date demonstrating a specific
form of domain independent learning. Our broader
research effort posits that CHS can provide the requisite
framework for unifying the features of constraint
programming and symbolic cognitive architectures in order
to demonstrate practical problem solving performance and
domain independent learning with cognitive architectures.

Soar Cognitive Architecture

 One of the earliest symbolic cognitive architectures
developed was Soar, created by John Laird, Allen Newell,
and Paul Rosenbloom at Carnegie Mellon University
[Laird et. al. 1987]. Soar is a symbolic architecture for
general intelligence that integrates basic mechanisms for

1
 In unpublished work by Shivers, the idea of introducing a

form of constraint propagation in Soar was suggested

[Shivers, 1986].

problem solving, use of knowledge, learning, and
perceptual-motor behaviour [Laird et al., 1987].

Soar consists of a single long-term memory encoded as
production rules and a single transient declarative working
memory. All long-term knowledge in Soar is represented
as if-then rules, called productions or production rules.
Soar’s symbolic working memory holds the agent’s
assessment of the current situation derived from perception
and retrieval of knowledge from its long-term memory
[Laird, et. al. 1987]. Working and long-term memories are
linked through a decision cycle which selects operators to
change states and detects impasses. Problem solving is
driven by the act of selecting problem spaces, states, and
operators in which each selection is accomplished through
a three-phase decision cycle. The phases are repeated until
the goal of the current task has been achieved. Chunking is
Soar’s learning mechanism that converts the results of
problem solving in subgoals into rules.

Constraint Programming

Independently, yet in close chronological parallel to the
problem-solving work of Newell and Simon, an alternative
problem-solving approach evolved called Constraint
Programming (CP). Constraint satisfaction is a sub-
domain of constraint programming dealing with problems
defined over a finite domain and involve no objective
function. More formally, a Constraint Satisfaction
Problem (CSP) is defined as a set of variables; for each
variable, a finite set of possible values (its domain), and a
set of constraints restricting the values that the variables
can simultaneously assume [Kumar, 1992]. Variables are
linked by constraints that can be either logical (i.e. X ≤ Y)
or symbolic (i.e. X Loves Y).

The principal techniques utilized to solve a CSP include a
combination of constraint propagation, variable and value
ordering and search. Constraint propagation is the term for
propagating the implications of a constraint on one variable
onto other variables [Kumar, 1992]. The objective of
propagation is to reduce the size of the variable domains
based on the constraints imposed on them. Variable and
value ordering heuristics can be utilized to dramatically
improve the efficiency of search and suggest which
variable should be assigned next and in what order the
values should be tried [Kumar, 1992]. The role of
constraints in problem solving has been reviewed by Fox,
where he notes constraints can provide structure to search
thereby reducing the size of the search space [Fox, 1986].

Constrained Heuristic Search The idea of augmenting
the definition of the problem space through the
introduction of a constraint graph representation is
encompassed in the Constrained Heuristic Search (CHS)
problem-solving model developed by Fox [Fox et. al.,
1989]. CHS is a combination of constraint satisfaction and
heuristic search. In this model, search is performed in the
problem space where each state is defined by a problem

topology and is represented as a constraint graph. CHS
augments the definition of a problem space by refining a
state to include problem topology (structure), textures
(measures of structure) and objective (rating alternative
solutions) [Fox, 1989].

Related Work

In a prototype system called CRIPS, Liu demonstrated how
constraint and rule-based reasoning can be integrated into a
hybrid problem-solving paradigm to deal with the problem
of representing disjunctions in rule-based systems [Liu,
1994]. Specifically, the disjunctions are represented as
constraint variables and their domains and the relations
among disjunctions are represented as constraints. Our
work extends this effort by integrating a more general form
of constraint based reasoning into an integrated rule-based
cognitive architecture.

A hybrid learning system was developed for automating
the acquisition of problem-solving knowledge using CSP
approaches [Subramanian, Freuder, 1990]. The technique
proposed compiles production rules from the observation
of constraint-based problem solving behaviour. The
compiled rules corresponded to the values deleted by the
constraint-based problem solving. In contrast to the work
of Subramanian and Freuder, our research proposes to
utilize Soar’s learning ability to encode texture-based
problem independent heuristics as learned rules.

The Adaptive Constraint Engine (ACE) is described as
“cognitively oriented” architecture that can learn from
experience solving problems in the CSP domain [Epstein,
et. al., 2002]. ACE is built upon an underlying general
problem solving and learning architecture called FORR
(FOr the Right Reasons) which represents knowledge as a
three-tiered hierarchy of procedures or “advisors.”

Varieties of learning within Soar have been extensively
investigated, including across different tasks, and the types
it has not yet exhibited include: vary large problems;
complex analogies; similarity-based generalization; and,
representational shifts [Steier, et. al, 1987]. Our work
seeks to reason over a much more abstracted problem
space thereby producing more generalized chunks
applicable to a much broader range of problem domains.

Design of CHS-Soar

There are two central, yet inter-related design goals of
CHS-Soar. First is the use of domain independent problem
solving techniques and the second is domain independent
learning. Specifically, CHS introduces a standard CSP
problem representation which encompasses the use of
variables, which have a domain of discrete values, and
constraints between variables. CHS also allows us to
introduce general purpose problem solving techniques such

as propagation and the use of domain independent problem
structure textures to guide variable and value selection.
The second design goal is to focus Soar’s internal
reasoning on the selection of textures measures to facilitate
the learning of domain independent problem solving rules
ideally useful across different problem types.
Architecturally (Figure 1) CHS-Soar is composed of three
parts: [1] the Soar kernel; [2] Soar agent (production
rules); and, [3] the external agent. A more detailed
overview of the design of CHS-Soar is provided by Bittle
and Fox [Bittle, Fox, 2008].

Soar Kernel

The Soar kernel is invariant and encompasses a fixed set of
computational mechanisms including: working memory
(state representation); long term memory (repository for
production rules); decision cycle (used to link working and
long term memory); and, learning system.

Soar Agent (Production Rules)

Production rules provide the “programming language” for
developers to create different Soar programs, called agents,
and form the content of Soar’s Long Term Memory.
Soar’s general problem-solving ability results from the fact
that the same architecture (the Soar kernel) can be used to
solve different problems as defined by different sets of
production rules. Rules are used to; propose, select and
apply operators.

Operators perform actions and are consequently the locus
of decision making [Laird et. al, 1987]. CHS-Soar
operators are focused on variable and value texture
measure selection. CHS-Soar operators provide the
framework to introduce the CHS problem solving cycle.

CHS-Soar Problem Solving Cycle Soar’s three-phase
decision cycle (proposal, decision, and apply) provides a
suitable framework to introduce the CHS problem solving
cycle summarized in Table 1.

Table 1: CHS Problem Solving Cycle
Repeat

1 Conduct propagation (or backtrack) within state

• calculate variable texture measures
2 Select variable (based on heuristics as suggested by

textures measures)

• calculate value texture measures
3 Select value (based on heuristics as suggested by

textures measures)
Until (all variables values instantiated & all constraints satisfied)

As depicted in Figure 2, three Soar decision cycles are
performed during one CHS cycle. Instrumental to the
learning of domain independent problem-solving rules is
the requirement to have the Soar agent component of the
CHS cycle only reason about the selection of normalized
variable and value textures measures — not actual problem
variable and values. Consequently the Soar agent is
decoupled from the actual problem constraint graph. The
Soar agent interacts with the external agent via production
action-side function calls.

External Agent

The external agent is an optional user-defined program
where Soar agent production rule functions reside. From
the external agent we can register new functions which can
extend the functionality of Soar agent productions. The
CHS external agent provides five functions including: CSP
problem representation (binary constraint graph);
constraint propagation using the AC-3 algorithm
[Mackworth, 1977]; chronological backtracking; and,
variable and value texture calculations.

Texture Measures Textures are structural measures of the
constraint graph used to guide the order of variable and
value selection [Fox et. al., 1989]. In order to demonstrate
the future introduction of more insightful texture measures
[Fox, 1990], three frequently cited [Kumar, 1992] variable
and value ordering measures (and their associated
heuristics) are utilized as outlined in Table 2.

Table 2: Texture Measures and Associated Heuristics

Name Texture Measures Heuristics

Minimum
Remaining
Value (MRV)

Di, Number of remaining
values in domain.

Select the variable
with the smallest Di,
value

Degree
(DEG)

Ci, number of constraints
linked to variable.

Select the variable
with the largest Ci
value

Least
Constraining
Value (LCV)

Fi, number of available
values in domain of linked
variables not instantiated.

Select the value
with the largest Fi
value

Figure 2: CHS-Soar Problem Solving Cycle

Figure 1: CHS-Soar Architecture

Of particular note is the separation of the texture measure
from its associated unary heuristic. In order to facilitate
learning across different problem sizes and more
importantly different problem domains, texture measures
are normalized between 0 (minimum value) and 1
(maximum value). A “pruned” (duplicate values removed)
list of normalized texture measures are returned to the Soar
agent. Pruning has the effect of further decoupling the
texture measures from any specific problem domain.

Soar and External Agent State Representation

The Soar agent initially establishes a binary constraint
graph in Soar’s working memory. Once problem solving
begins, the Soar agent state representation is defined by the
CHS phase (i.e. select variable), state status, desired state,
and the collection of normalized texture measures. In
contrast, the external agent maintains a complete binary
constraint graph problem representation.

Subgoaling and Learning

Planning in Soar arises out of its impasse detection and
substate creation mechanism. Soar automatically creates a
subgoal whenever the preferences are insufficient for the
decision procedure to select an operator [Laird, et. al,
1987]. Soar includes a set of default production rules that
allow subgoaling to be performed using a simple look-
ahead search which CHS-Soar utilizes to evaluate variable
and value texture measure performance. After
propagation, the Soar agent has no prior knowledge of
which variable and/or value texture measure to select
(assuming no previous learning). Soar will detect an
impasse and automatically subgoal to evaluate each texture
measure returned and now cast as operators.

Texture Measure Evaluation CHS-Soar uses three
separate, yet related texture measure evaluations. The first
is a simple numerical evaluation which gives a higher
preference to the texture measure that requires fewer
propagation cycles to achieve a candidate solution.
Second, if a texture measure leads to a substate domain
blow-out it is symbolically evaluated as a failure and
rejected. Third, if we cannot match a texture measure in
the substate (i.e. an updated constraint graph is generated
that does not include the texture measure under evaluation)
the texture measure is symbolically evaluated as a “partial
failure.”

Since CHS requires both variable and value selections to
advance a solution, in order to facilitate the evaluation of
any substate variable texture measure we are required to
make some type of value texture measure commitment
leading to a variable – value texture measure pairing. The
approach utilized is to allow Soar to further subgoal (i.e. a
sub-subgoal) about value texture selection based on the
value texture measures generated for each variable texture
measure under consideration. Within each sub-substate,

the variable — value pairing is held constant and a
“candidate” solution is attempted.

The second design goal of CHS-Soar is the learning of
domain independent problem solving rules — specifically
rules that can be transferred and effectively used on
different problem types. Chunks are created in the CHS-
Soar agent as we resolve impasses. Resulting chunks have
as their conditions either unary or binary conditions
composed of texture measures (cast as operators).

Implementation of CHS-Soar

The CHS-Soar agent was developed using Soar version
8.6.3 (Windows versions). The external agent was
developed in C++ using Windows Visual Studio 2005.

Experiments

The paper reports on two selected computational
experiments performed to-date. The objective of
experiment 1 is to establish the subgoaling, learning and
transfer of learning ability of CHS-Soar. Experiment 2
considered the impact of problem size/complexity on the
performance of externally learned chunks. Problem
instances were run 10 times and averaged. Experiments
were conducted for two sample problems: [1] map
colouring (MC); [2] job-shop scheduling (JSS), both well
known combinatorial problems. The relationship of the
map colouring problem and the more formal four-colour
problem to general intelligence is highlighted by Swart
[Swart, 1980] who notes one of the main attractions of the
problem lies in the fact that it is “so simple to state that a
child can understand it.” The JSS problem instance is
taken from [Pang, et. al, 2000]. Results are presented in
terms of “Decisions (cycles)” — the basic unit of
reasoning effort in Soar (see Figure 2).

Experiment 1: Learning and Transfer of Learning

The first experiment investigated the impact of subgoaling,
internal learning and the transfer of externally learned rules
between problem types. In order to assess the performance
of an external set of learned chunks on the map colouring
problem, the chunks acquired through internal learning
from the JSS problem were introduced for test case 4 (see
Table 3) and vise versa for the JSS.

Table 3: Learning and Transfer of Learning Test Cases

Ref Test Case Description

1 Random Random selection of variable and value

texture measures (indifferent).

2 Hard-

Coded

Explicitly coded MRV, DEG variable selection

heuristics and LCV value selection heuristic.

3 Internal Problem is run using internally acquired

chunks.

4 External Problem is run using externally acquired

chunks from different problem domain.

Results and Discussion

Figure 3 presents the number of decisions required to solve
the CHS-Soar model of a map colouring problem (11
variables and 23 constraints) for the test cases outlined in
Table 3. As highlighted the hard-coded variable and value
texture selection heuristics (case 2) result in a lower
number of decisions (41% reduction) then when using a

random selection of texture measures (case 1). When
subgoaling and learning were enabled (case not shown),
CHS-Soar generated on average 60 chunks. Case 3
demonstrates improved problem solving using the 60
internally acquired learned rules as compared to the
explicit use of hard-coded heuristics (case 2) resulting in a
21% reduction in decision cycles. For case 3 it was
observed that CHS-Soar used both a combination and
range of variable and value texture measure types and
values to secure a solution.

Case 4 demonstrates the domain independent problem
solving performance of CHS-Soar chunks using 177
chunks externally learned from the JJS problem. Case 4
resulted in a 16% reduction in decision cycles over case 2
(hard-coded heuristics). Yet for case 4 we observe a 6%
increase in decision cycles as compared case 3 (internal
learned chunks).

Figure 4 presents the number of decision cycles required to
solve the CHS-Soar model of a 3x5 Job-Shop Schedule
(JSS) problem (15 variables and 35 constraints) for the test
cases outlined in Table 3. Similar to the map colouring
problem instance, we can observe a reduction in decision
cycles (29% lower) using hard coded heuristics (case 2)
over the random selection (case 1). Subgoaling and
learning (one training run) resulted in 177 internally
learned chunks. We note a 23% reduction in decision
cycles when the problem is solved using internally learned
rules (case 3) as compared with the explicit use of hard
coded heuristics (case 2). Case 4 illustrates the impact of
using 60 externally learned rules acquired from the map
colouring problem. Case 4 shows a 10% reduction in the
number of decision cycles as compared to case 2 (hard
coded).

Experiment 2: Scalability

The second experiment explored the performance of
externally learned chunks as a function of problem
complexity for the map colouring problem. Specifically,
the 177 learned chunks from the job-shop scheduling
problem (3x5) were introduced into progressively larger
map colouring problems ranging in size from 7 variables (9
constraints) to 44 variables (103 constraints).

Results and Discussion

Figure 5 presents a comparison of decisions cycles for 3
selected test cases (see Table 3 as a function of problem
complexity for the map colouring problem. For case 5, the
177 externally learned chunks from the 3x5 JJS problem
were introduced to solve each MC problem instance.

 As illustrated for this specific problem series, the
externally acquired learned rules demonstrate similar
problem solving performance, to both the hard-coded
heuristics and internally generated chunks as problem
complexity increases.

Map Colouring (11 Variables, 23 Constraints)

173 102 81 86
0

50

100

150

200

Case 1 - Random

Selection

Case 2 - Hard Coded

Hueristics

Case 3 - Internal

learned chunks

Case 4 - External

learned chunks

D
e
c
is

io
n

s

Figure 3: Map Colouring-Decisions as a Function of

Subgoaling/Learning Test Cases.

(3x5) Job-Shop Scheduling Problem (15 Variables, 35 Constraints)

98 70 54 63
0

25

50

75

100

Case 1 - Random

Selection

Case 2 - Hard Coded

Hueristics

Case 3 - Internal

learned chunks

Case 4 - External

learned chunks

D
e

c
is

io
n

s

Figure 4: JSS-Decisions as a Function of

Subgoaling/Learning Test Cases.

Map Colouring Problem

0

100

200

300

400

7 11 22 33 44

Problem Complexity (Number of Variables)

D
e
c
is

io
n

s

Case 2 - Hard Coded Hueristics

Case 3 - Internal learned chunks

Case 4 - External learned chunks

Figure 5: Map Colouring-Comparison of Decisions

versus Problem Complexity for Selected Test Cases.

Conclusions and Future Work

While preliminary, work to date has demonstrated how a
specific form of constraint-based reasoning (CHS) can be
effectively introduced into a symbolic cognitive
architecture (Soar) using a generalized set of 34
productions. This results in an integration of two
important types of reasoning techniques, namely constraint
propagation and rule chaining.

We have demonstrated the ability of CHS-Soar to learn
rules while solving one problem type (i.e., graph
colouring) that can be successfully applied in solving
another problem type (i.e., Job Shop Scheduling). CHS
and specifically the use of texture measures allow us to
transform a problem specific search space (based on
variables and values) into a more generalized one based on
abstracted texture measures which provides the
environment to achieve domain independent learning.

Future work will include an expanded portfolio of test case
problems to further validate and better understand CHS-
Soar ability to learn and use domain independent texture
based rules for more practical problems. More insightful
texture measures, support augmentation (i.e. frequency)
and improved texture evaluation functions are also being
investigated as well as a texture based “discovery system.”

References

Bittle, S.A., Fox, M.S., (2008), "Introducing Constrained
Heuristic Search to the Soar Cognitive Architecture",
Technical Report, Enterprise Integration Laboratory
http://www.eil.utoronto.ca/other/papers/index.html.

Diaper, D., Huyck, C., Amavasai, B., Cheng, X. and
Oussalah, M. 2007. Intelligently Engineering Artificial
Intelligence Engineering: The Cognitive Architectures
Competition. Proceedings of the workshop W3 on
Evaluating Architectures for Intelligence, at the
Association for the Advancement of Artificial Intelligence
annual conference (Vancouver).

Epstein, S. L., Freuder, E.C., Wallace, R.J, Morozov, A.,
Samuels, B. 2002. The Adaptive Constraint Engine. In P.
Van Hentenryck, editor, Principles and Practice of
Constraint Programming -- CP 2002: 8th International
Conference, Proceedings, volume LNCS 2470 of Lecture
Notes in Computer Science, pages 525--540.
SpringerVerlag, 2002.

Fox, M.S., Sadeh, N., Bayken, C., 1989. Constrained
Heuristic Search. Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, pg:309– 315.

Fox, M.S., 1986. Observations on the Role of Constraints
in Problem Solving, Proceedings Sixth Canadian
Conference on Artificial Intelligence, Montreal, Quebec.

Kumar, V., 1992. Algorithms for constraint-satisfaction
problems: A survey. AI Magazine, 13(1):32-44, 1992

Laird, J.E., Newell, A., Rosenbloom, P. 1987. Soar: An
Architecture for General Intelligence. Artificial
Intelligence, 33: 1-64.

Laird, J. E. 2008. Extending the Soar Cognitive
Architecture. Artificial General Intelligence Conference,
Memphis, TN.

Langley, P., Laird, J., Rogers, S., 2006. Cognitive
Architectures: Research Issues and Challenges, Technical
Report, Computational Learning Laboratory, CSLI,
Stanford University, CA..

Liu, B., 1994. Integrating Rules and Constraints
Proceedings of the 6th IEEE International Conference on
Tools with Artificial Intelligence (TAI-94), November 6-9,
1994, New Orleans, United States, 1994.

Mackworth, A.K., 1977. Consistency in Networks of
Relations, J. Artificial Intelligence, vol. 8, no. 1, pp. 99-
118, 1977.

Pang, W., Goodwin, S.D., 2004. Application of CSP
Algorithms to Job Shop Scheduling Problems,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5
0.9563.

Shivers, O., 1986. Constraint propagation and macro-
compilation in Soar. In Proceedings of the Soar Fall ‘86
Workshop, November 22, 1986.

Steier, D.M., Newell, A., Flynn, R., Polk, T.A., Unruh, A.,
1987. “Varieties of Learning in Soar.” The Soar Papers:
Research on Integrated Intelligence, Volume 1, Chapter 18,
Pages 536-548, MIT Press, Cambridge, Massachusetts.

Subramanian, S.; Freuder, E.C. 1990. Rule compilation
from constraint-based problem solving. Tools for Artificial
Intelligence, 1990, Proceedings of the 2nd International
IEEE Conference on, Vol., Iss, 6-9 Nov 1990, pp: 38-47.

Swart, E.R., 1980. "The philosophical implications of the
four-color problem". American Mathematical Monthly
(JSTOR) 87 (9): 697--702. http://www.joma.org/images/
upload_library/22 /Ford/Swart697-707.pdf.

Wallace, M., 1996. Practical applications of constraint
programming, Constraints, An International Journal, 1,
139-168.

