
Pointer Semantics with Forward Propagation

Sujata Ghosh∗
Center for Soft Computing Research

Indian Statistical Institute
Kolkata, West Bengal, India

Benedikt Löwe†
Institute for Logic,

Language and Computation
Universiteit van Amsterdam

1018 TV Amsterdam, The Netherlands

Sanchit Saraf‡
Department of Mathematics and Statistics

Indian Institute of Technology
Kanpur 208016, India

Abstract

In this paper, we will discuss a new approach to formally
modelling belief change in systems of sentences with inter-
dependency. Our approach is based on the paradigm called
pointer semantics or revision theory which forms a funda-
mental way of successfully understanding the semantics of
logic programming, but has also been used extensively in
philosophical logic and other applications of logic. With a
purely unidirectional (backward) flow of change, pointer se-
mantics are not fit to deal with belief change. We propose
an extension that allows flow of change in both directions in
order to be applied for belief change.

Introduction
Pointer semantics
Pointer semantics are a formal propositional language for
finitely many propositions {p0, ...,pn} defined in terms of
each other, and are a well-established tool in logic. The un-
derlying idea of pointer semantics is to

“iterate away uncertainties and keep the
values that stabilize”:

(#)

Starting with an initial hypothesis for the truth values that
may be in conflict with each other, you apply the Tarskian
definition of truth repeatedly and consider the iteration se-
quence. Those values that stabilize will be kept, the others
discarded. The semantics based on (#) have been rediscov-
ered several times independently and have found applica-
tions in various areas of foundational study and philosophy.1
The language of pointer semantics is closely related to logic
programming and is the logical reflection of the “Revision
∗Additional affiliation: Department of Mathematics, Visva-

Bharati, Santiniketan, India.
†Additional affiliations: Department Mathematik, Universität

Hamburg, Hamburg, Germany; Mathematisches Institut, Rheinis-
che Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
‡The third author would like to thank the Institute for Logic,

Language and Computation (ILLC) of the Universiteit van Amster-
dam and the Department Mathematik of the Universität Hamburg
for their hospitality during his visit from May to July 2008. All
three authors would like to thank Bjarni Hilmarsson (Amsterdam)
for programming support.

1For more details, cf. the section ‘The ubiquity of revision’ in
(Löw06, § 6).

Theory of Truth” (GB93). The version of pointer seman-
tics that we shall be using in this paper is essentially that of
Haim Gaifman (Gai88; Gai92). The revision rules of pointer
semantics let the truth value of a proposition depend on the
values of those propositions it points to in the dependency
graph (cf. Definition 1), so truth values “flow backward in
the dependency graph”.

Pointer semantics for belief systems
It has been suggested several times (e.g., cf. (Löw06)) that
the underlying principle (#) could be used for other pro-
cesses involving revision, e.g., the process of revising and
updating our beliefs in the face of learning new and unex-
pected facts. But the mentioned “backward flow” of tra-
ditional pointer semantics makes sure that truth values of
terminal nodes in the dependency graph (which would typi-
cally correspond to those newly learned atomic statements)
will never change in the revision process. In the context
of belief, we would need forward propagation of truth val-
ues along the dependency graph. This idea has been im-
plemented in a formal system in (GLS07), but the system
proposed by the authors was not easy to handle.

Aims, motivation and related work
Our aim is to provide a new framework for a semantics of
belief change based on the general principle (#) using the
standard definition of revision semantics (Definition 2). In
this paper, we cannot give a motivation of the general frame-
work of revision theory and refer the reader to the extensive
philosophical discussion in (GB93) or the survey (Löw06).
Our aim is to stay as close as possible to the spirit of that
framework.

There are many competing formal frameworks that deal
with the question “How can we model rational belief
change?”, most of which far more developed than what
can be outlined in this short note. Transition systems and
action description languages have been used in (HD05;
HD07); there is a rich literature on using probabilistic log-
ics for modelling belief change; in machine learning, depen-
dency networks, Bayesian networks and Markov logic net-
works have been used (KDR07; HCH03; KD05); an argu-
mentation theoretic approach can be found in (CnS07). This
short list only scratches the surface of the vast literature of
very good, intuitive and successful answers to our general



question. Our approach of staying as close as possible to
the pointer semantics paradigm of (#) cannot yet compete
at the same level of depth and maturity at the moment. So,
we need to explain why one should be interested in a new
approach to belief change based on pointer semantics:

Traditional logic approaches to belief update are at the
level of axiomatics of what we require of a belief change
function, not at the more detailed level of how to actually
make the decisions about the adequate belief change. For
instance, if an agent believes {p → q, p} and learns {¬q},
then the axiomatic prediction would be that either p → q or
p has to be dropped, but without further details, it is difficult
to predict which one.

As discussed in (Löw06), pointer semantics carries a lot
of information transcending the pure definition of the se-
mantics (Definition 2): you can look at how fast stable val-
ues stabilize, at the various oscillation patterns of oscillating
hypotheses, etc. This information can be used for definitions
of levels or types of stability in order to help with priori-
tizing, promising to provide new insight in possible belief
revision operators. These are tools that might be applica-
ble directly in modelling belief change, or could serve as
a subsidiary tool to support other (established) systems of
formal belief change models for applications in artificial in-
telligence.

Overview of this paper
In our section “Definitions”, we give the standard Definition
2 from pointer semantics (following (Löw06)) and define an
algebra of pointer systems. The latter definition is new to
this paper, allowing to state and prove Propositions 3 and 4
in the case of operators restricted to backward propagation.
The central new definition of this paper is in the section “Be-
lief Semantics with Forward Propagation”. In the section
“Properties of our Belief Semantics” we test our system in
an example originally used in (GLS07) and finally see that
our system is ostensibly non-logical as expected for a sys-
tem is intended to model systems of belief.2 We close with
a discussion of future work in our final section.

Definitions
Abstract Pointer Semantics
Fix a finite set of propositional variables {p0, ...,pn}. An
expression is just a propositional formula using ∧, ∨, and
¬ and some of the propositional variables or the empty se-
quence, denoted by .

We fix a finite algebra of truth values T with operations
∧, ∨ and ¬ corresponding to the syntactic symbols. We as-
sume a notion of order corresponding to information content
that gives rise to a notion of infimum in the algebra of truth
values, allowing to form inf(X) for some subset of X ⊆ T.
A truth value will represent the lowest information content
(i.e., a least element in the given order); this truth value will
be denoted by ½. We allow inf to be applied to the empty
set and let inf ∅ := ½.

2“The fact that the logic of belief, even rational belief, does
not meet principles of truth-functional deductive logic, should no
longer surprise us (Gol75, p. 6).”

Our salient example is the algebra T := {0,½, 1} with
the following operations (“strong Kleene”):

∧ 0 ½ 1
0 0 0 0
½ 0 ½ ½
1 0 ½ 1

∨ 0 ½ 1
0 0 ½ 1
½ ½ ½ 1
1 1 1 1

¬
0 1
½ ½
1 0

.

The value ½ stands for ignorance, and thus the infimum is
defined as inf({t}) := t, inf({½}∪X) := ½, inf({0, 1}) :=
½. This algebra of truth values will be used in this paper,
even though the set-up in this section is more general.

If E is an expression and pi is one of the propositional
variables, then pi←E is a clause. We intuitively interpret
pi←E as “pi states E”. If E0, ..., En are expressions, a set
of clauses Σ := {p0←E0, ...,pn←En} is called a pointer
system. An interpretation is a function I : {p0, ...,pn} →
T assigning truth values to propositional letters. Note that if
T is finite, the set of interpretations is a finite set (we shall
use this later). A given interpretation I can be naturally ex-
tended to a function assigning truth values to all expressions
(using the operations ∧, ∨ and ¬ on T). We denote this ex-
tended function with the same symbol I .

A clause can be transformed into an equation in T: if
pi←E is a clause, we can read it as an equation pi = E
in T. If Q is such an equation, we say that an interpretation I
is a solution of Q if plugging the values {I(p0), ..., I(pn)}
into the corresponding variables of the equation results in
the same value left and right of the equals sign. An interpre-
tation is a solution of a set of equations if it is a solution of
each equation in the set.

A function mapping interpretations to interpretations is
called a revision function; a family of these functions in-
dexed by pointer systems is called a revision operator. If
δ is a revision operator, we write δΣ for the revision func-
tion assigned to the pointer system Σ (and sometimes just
write δ if Σ is clear from the context). We use the usual
notation for iteration of revision functions, i.e., δ0(I) := I ,
δn+1(I) := δ(δn(I)).

Definition 1 Given a pointer system {p0←E0,...,pn←En},
we define its dependency graph by letting {0, ..., n} be the
vertices and allowing an edge from i to j if pj occurs inEi.3

Given a proposition pi, arrows point to i from the propo-
sitions occurring in Ei, and thus we call a revision operator
δ an B-operator (for “backward”) if the value of δ(I)(pi)
only depends on the values of I(pj) for pj occurring in Ei.

Fix Σ and δ. We call an interpretation I (Σ, δ)-stable if
there is some k such that for all n ≥ k, δn(I) = I . We call
I (Σ, δ)-recurring if for every k there is a n ≥ k such that
δn(I) = I . If Σ is fixed by the context, we drop it from the
notation and call interpretations δ-stable and δ-recurring.
If H is an interpretation, we consider the sequence H∞ :=
{δi(H) ; i ∈ N} of interpretations occurring in the infinite
iteration of δ onH . Clearly, if there is a stable interpretation
in H∞, then this is the only recurring interpretation in H∞.
We write RecΣ,δ(H) for the set of recurring interpretations

3The relationship between pointer semantics and the depen-
dency graph has been investigated in (Bol03).



in H∞. Note that since the set of interpretations in finite,
this set must be non-empty. If I ∈ RecΣ,δ(H), then there
are i, j > 0 such that I = δi(H) = δi+j(H). Then for ev-
ery k < j and every n, we have δi+k = δi+n·j+k(H), so the
sequence H∞ exhibits a periodicity of length j (or a divisor
of j). After the first occurrance of an I ∈ RecΣ,δ(H), all
further elements of H∞ are recurring as well, and in partic-
ular, there is a recurring J such that δ(J) = I . We shall call
this an I-predecessor and will use this fact in our proofs.
Definition 2

JΣ,piKδ,H := inf{I(pi) ; I ∈ RecΣ,δ(H)}, and

JΣ,piKδ := inf{I(pi) ; ∃H(I ∈ RecΣ,δ(H))}.

An algebra of pointer systems
In the language of abstract pointer systems, the possibility of
complicated referential structures means that the individual
proposition cannot be evaluated without its context.

As a consequence, the natural notion of logical operations
is not that between propositions, but that between systems.
If Σ = {p0←E0, ...,pn←En} is a pointer system and 0 ≤
i ≤ n, we define a pointer system that corresponds to the
negation of pi with one additional propositional variable p¬,

¬(Σ,pi) := Σ ∪ {p¬←¬pi}.
If we have two pointer systems

Σ0 = {p0←E0,0, ...,pn0←E0,n0}, and

Σ1 = {p0←E1,0, ...,pn1←E1,n1},
we make their sets of propositions disjoint by considering a
set {p0, ...,pn0 ,p

∗
0, ...,p

∗
n1
,p∗} of n0 +n1 +2 propositional

variables. We then set

Σ∗1 := {p∗0←E1,0, ...,p∗n1
←E1,n1}.

With this, we can now define two new pointer systems (with
an additional propositional variable p∗):

(Σ0,pi) ∧ (Σ1,pj) := Σ0 ∪ Σ∗1 ∪ {p∗←pi ∧ p∗j},
(Σ0,pi) ∨ (Σ1,pj) := Σ0 ∪ Σ∗1 ∪ {p∗←pi ∨ p∗j}.

Logical properties of Gaifman pointer semantics
Fix a system Σ = {p0←E0, ...,pn←En}. A proposition
pi is called a terminal node if Ei = ; it is called a
source node if pi does not occur in any of the expressions
E0, ..., En. This corresponds directly to the properties of i
in the dependency graph: pi is a terminal node if and only
if i has no outgoing edges in the dependency graph, and it
is a source node if and only if i has no incoming edges in
the dependency graph. The Gaifman-Tarski operator δB
is defined as follows:

δB(I)(pi) :=
{
I(Ei) if pi is not terminal,
I(pi) if pi is terminal.

Note that this operator can be described as follows:
“From the clause pi←Ei form the equation Qi by replac-
ing the occurrences of pi on the right-hand side of the
equality sign with the values I(pi). If pi is a terminal
node, let δ(I)(pi) := I(pi). Otherwise, let I∗ be the
unique solution to the system of equations {Q0, ..., Qn}
and let δ(I)(pi) := I∗(pi).”

(*)

This more complicated description will provide the motiva-
tion for the forward propagation operator δF in the section
“Belief semantics with forward propagation”.

The operator δB gives rise to a logical system, as the se-
mantics defined by δB are compatible with the operations in
the algebra of pointer systems.

Proposition 3 Let Σ = {p0←E0, ...,pn←En} be a pointer
system. For any i ≤ n, we have

J¬(Σ,pi)KδB = ¬JΣ,piKδB .

Proof. In this proof, we shall denote interpretations for the
set {p0, ...,pn} by capital letters I and J and interpreta-
tions for the bigger set {p0, ...,pn,p¬} by letters Î and Ĵ .
It is enough to show that if Î is δB-recurring, then there is
some δB-recurring J such that Î(p¬) = ¬J(pi). If I is
δB-recurring, we call J an I-predecessor if J is also δB-
recurring and δB(J) = I , and similarly for Î . It is easy to
see that every δB-recurring I (or Î) has an I-predecessor (or
Î-predecessor) which is not necessarily unique.

As δB is a B-operator, we have that if Ĵ is δB-recurring,
then so is J := Ĵ�{p0, ...,pn}.

Now let Î be δB-recurring and let Ĵ be one of its Î-
predecessors. Then by the above, J := Ĵ�{p0, ...,pn} is
δB-recurring and

Î(p¬) = δB(Ĵ)(p¬) = ¬Ĵ(pi) = ¬J(pi).

q.e.d.

Proposition 4 Let Σ0 = {p0←E0, ...,pn←En} and Σ1 =
{p0←F0, ...,pm←Fm} be pointer systems. For any i, j ≤
n, we have

J(Σ0,pi) ∨ (Σ1,pj)KδB = JΣ0,piKδB ∨ JΣ1,pjKδB .

Similarly for ∨ replaced by ∧.

Proof. The basic idea is very similar to the proof of Proposi-
tion 3, except that we have to be a bit more careful to see how
the two systems Σ0 and Σ1 can interact in the bigger system.
We reserve letters I0 and J0 for the interpretations on Σ0, I1
and J1 for those on Σ1 and I and J for interpretations on
the whole system, including p∗. If JΣ0,p1K = 1, then any
δB-recurring I must have I(p∗) = 1 by the ∨-analogue of
the argument given in the proof of Proposition 3. Similarly,
for JΣ1,pjK = 1 and the case that JΣ0,piK = JΣ1,pjK = 0.
This takes care of six of the nine possible cases.

If I0 and I1 are δB-recurring, then so is the function
I := δ(I0) ∪ δ(I1) ∪ {〈p∗, I0(pi) ∨ I1(pj)〉} (if I0 is k-
periodic and I1 is `-periodic, then I is at most k ·`-periodic).
In particular, if we have such an I0 with I0(pi) = ½ and an
I1 with I1(pj) 6= 1, then I(p∗) = ½ (and symmetrically for
interchanged rôles). Similarly, if we have recurring interpre-
tations for relevant values 0 and 1 for both small systems, we
can put them together to δB-recurring interpretations with
values 0 and 1 for the big system. This gives the truth value
½ for the disjunction in the remaining three cases.

q.e.d.



H0 δB(H0) δF(H0) H1 δB(H1) δF(H1) H2 δB(H2) δF(H2) H3 δB(H3) δF(H3) H4

0 ½ 0 0 1 0 ½ 1 ½ 1 1 1 1

1 1 ½ 1 1 ½ 1 1 ½ 1 1 ½ 1

0 0 ½ 0 0 ½ 0 0 ½ 0 0 ½ 0

½ 0 ½ 0 0 ½ 0 0 ½ 0 0 0 0

½ ½ ½ ½ 1 ½ 1 1 1 1 1 1 1

Figure 1: The first three iterations of values of H0 = (0, 1, 0,½,½) up to the point of stability (H3 = (1, 1, 0, 0, 1)).

Belief semantics with forward propagation
In (GLS07), the authors gave a revision operator that incor-
porated both backward and forward propagation. The value
of δ(I)(pi) depended on the values of all I(pj) such that j
is connected to i in the dependency graph. Here, we split the
operator in two parts: the backward part which is identical
to the Gaifman-Tarski operator, and the forward part which
we shall define now.

In analogy to the definition of δB, we define δF as follows.
Given an interpretation I , we transform each clause pi←Ei
of the system into an equation Qi ≡ I(pi) = Ei where the
occurrences of the pi on the left-hand side of the equation
are replaced by their I-values and the ones on the right-hand
side are variables. We obtain a system {Q0, ..., Qn} of n+ 1
equations in T. Note that we cannot mimic the definition of
δB directly: as opposed to the equations in that definition,
the system {Q0, ..., Qn} need not have a solution, and if it
has one, it need not be unique. We therefore define: if pi is
a source node, then δF(I)(pi) := I(pi). Otherwise, let S be
the set of solutions to the system of equations {Q0, ..., Qn}
and let δF(I)(pi) := inf{I(pi) ; I ∈ S} (remember that
inf ∅ = ½). Note that this definition is literally the dual
to definition (*) of δB (i.e., it is obtained from (*) by inter-
changing “right-hand side” by “left-hand side” and “termi-
nal node” by “source node”).

We now combine δB and δF to one operator δT by defin-
ing pointwise

δT(I)(pi) := δF(I)(pi)⊗ δB(I)(pi)
where ⊗ has the following truth table:4

⊗ 0 ½ 1
0 0 0 ½
½ 0 ½ 1
1 ½ 1 1

.

4The values for agreement (0⊗0, ½⊗½, and 1⊗1) are obvious
choices. In case of complete disagreement (0 ⊗ 1 and 1 ⊗ 0), you
have little choice but give the value ½ of ignorance (otherwise,
there would be a primacy of one direction over the other). For
reasons of symmetry, this leaves two values ½⊗0 = 0⊗½ and ½⊗
1 = 1 ⊗ ½ to be decided. We opted here for the most informative
truth table that gives classical values the benefit of the doubt. The
other options would be the tables

⊗0 0 ½ 1
0 0 ½ ½
½ ½ ½ 1
1 ½ 1 1

⊗1 0 ½ 1
0 0 0 ½
½ 0 ½ ½
1 ½ ½ 1

⊗2 0 ½ 1
0 0 ½ ½
f½ ½ ½ ½
1 ½ ½ 1

.

Each of these connectives will give rise to a slightly different se-
mantics. We opted for the first connective ⊗, as the semantics
based on the other three seem to have a tendency to stabilize on
the value ½ very often (the safe option: in case of confusion, opt
for ignorance).

Properties of our belief semantics
As mentioned in the introduction, we should not be shocked
to hear that a system modelling belief and belief change
does not follow basic logical rules such as Propositions 3
and 4. Let us take the particular example of conjunction:
the fact that belief is not closed under the standard log-
ical rules for conjunction is known as the preface para-
dox and has been described by Kyburg as “conjunctivitis”
(Kyb70). In other contexts (that of the modality of “ensuring
that”), we have a problem with simple binary conjunctions
(Sch08). Of course, the failure of certain logical rules in
reasoning about belief is closely connected to the so-called
“errors in reasoning” observed in experimental psychology,
e.g., the famous Wason selection task (Was68). What con-
stitutes rational belief in this context is an interesting ques-
tion for modellers and philosophers alike (Ste97; Chr07;
Cou08). Let us focus on some concrete examples to vali-
date our claim that the semantics we propose do agree with
intuitive understanding, and thus serve as a quasi-empirical
test for our system as a formalization of reasoning in self-
referential situations with evidence.

Concrete examples
So far, we have just given an abstract system of belief flow
in our pointer systems. In order to check whether our sys-
tem results in intuitively plausible results, we have to check
a few examples. Keep in mind that our goal should be to
model human reasoning behaviour in the presence of par-
tially paradoxical situations. In this paper, we can only give
a first attempt at testing the adequacy of our system: an em-
pirical test against natural language intuitions on a much
larger scale is needed. For this, also cf. our section “Dis-
cussion and Future Work”.

The Liar As usual, the liar sentence is interpreted by the
system Σ := {p0←¬p0}. Since we have only one propo-
sitional variable, interpretations are just elements of T =
{0,½, 1}. It is easy to see that δB(0) = δF(0) = δT(0) = 1,
δB(½) = δF(½) = δT(½) = ½, and δB(1) = δF(1) =
δT(1) = 0. This means that the δT-behaviour of the liar
sentence is equal to the Gaifman-semantics behaviour.

The Miller-Jones Example Consider the following test
example from (GLS07):

Professors Jones, Miller and Smith are colleagues in a com-
puter science department. Jones and Miller dislike each other
without reservation and are very liberal in telling everyone
else that “everything that the other one says is false”. Smith
just returned from a trip abroad and needs to find out about
two committee meetings on Monday morning. He sends out
e-mails to his colleagues and to the department secretary. He
asks all three of them about the meeting of the faculty, and



H∗
0 δB(H∗

0 ) δF(H∗
0 ) H∗

1 δB(H∗
1 ) δF(H∗

1 ) H∗
2 δB(H∗

2 ) δF(H∗
2 ) H∗

3 δB(H∗
3 ) δF(H∗

3 ) H∗
4 δB(H∗

4 ) δF(H∗
4 ) H∗

5

0 ½ 0 0 1 0 ½ 1 ½ 1 1 1 1 1 1 1

1 1 ½ 1 1 ½ 1 1 ½ 1 1 ½ 1 1 ½ 1

0 0 ½ 0 0 ½ 0 0 ½ 0 0 ½ 0 0 ½ 0

½ 0 ½ 0 0 ½ 0 0 ½ 0 0 0 0 0 0 0

0 ½ ½ ½ ½ ½ ½ 1 ½ 1 1 ½ 1 1 1 1

1 1 ½ 1 1 ½ 1 1 ½ 1 1 ½ 1 1 ½ 1

0 0 ½ 0 0 ½ 0 0 ½ 0 0 ½ 0 0 ½ 0

½ 0 1 ½ 0 ½ 0 0 ½ 0 0 0 0 0 0 0

½ ½ ½ ½ ½ ½ ½ ½ ½ ½ 1 ½ 1 1 1 1

Figure 2: The first three iterations of values of H∗0 = (0, 1, 0,½, 0, 1, 0,½,½) up to the point of stability (H∗4 =
(1, 1, 0, 0, 1, 1, 0, 0, 1)).

Jones and the secretary about the meeting of the library com-
mittee (of which Miller is not a member).
Jones replies: “We have the faculty meeting at 10am and the
library committee meeting at 11am; by the way, don’t believe
anything that Miller says, as he is always wrong.”
Miller replies: “The faculty meeting was cancelled; by the
way don’t believe anything that Jones says, as he is always
wrong.”
The secretary replies: “The faculty meeting is at 10 am and
the library committee meeting is at 11 am. But I am sure
that Professor Miller told you already as he is always such an
accurate person and quick in answering e-mails: everything
Miller says is correct.” (GLS07, p. 408)

Trying to analyse Smith’s reasoning process after he re-
turns from his trip, we can assume that he generally believes
the secretary’s opinions, and that he has no prior idea about
the truth value of the statements “the faculty meeting is at
10am” and “the library meeting is at 11am” and the utter-
ances of Miller and Jones. We have a vague intuition that
tells us that in this hypothetical situation, Smith should at
least come to the conclusion that the library meeting will be
held at 11am (as there is positive, but no negative evidence).
His beliefs about the faculty meeting are less straightfor-
ward, as there is some positive evidence, but also some neg-
ative evidence, and there is the confusing fact that the secre-
tary supports Miller’s statement despite the disagreement in
truth value.

In (GLS07, p. 409), the authors analysed this example
with their real-valued model and ended up with a stable so-
lution in which Smith accepted both appointments and took
Jones’s side (disbelieving Miller). In our system, we now
get the following analysis: A pointer system formulation is
given as follows.

p0 ← ¬p1 ∧ ¬p4, p1 ← ¬p0 ∧ p2 ∧ p4,
p2 ← , p3 ← p0 ∧ p2 ∧ p4,
p4 ← ,

where p0 is Miller’s utterance, p1 is Jones’s utterance, p2

is “the library meeting will take place at 11am”, p3 is the
secretary’s utterance, and p4 is the “the faculty meeting will
take place at 10am”.

We identify our starting hypothesis with H :=
(½,½,½, 1,½) (here, as usual, we identify an interpretation
with its sequence of values in the order of the indices of the
propositional letters). Then δB(H) = (½,½,½,½,½) and
δF(H) = (½,½, 1, 1,½), so that we get H ′ := δT(H) =
(½,½, 1, 1,½). Then, in the second iteration step, δB(H ′) =

(½,½, 1,½,½) and δF(H ′) = (½,½, 1, 1,½), so we obtain
stability at δT(H ′) = H ′.

Examples of nonlogical behaviour

In what follows, we investigate some logical properties of
the belief semantics, viz. negation and disjunction, fo-
cussing on stable hypotheses. To some extent, our results
show that the operator δT is rather far from the logical prop-
erties of δB discussed in Propositions 3 and 4.

Negation Consider the pointer system Σ given by

p0 ← ¬p3, p1 ← ,
p2 ← , p3 ← p1 ∧ p2.

The interpretation H := (0, 1, 0,½) is δT-stable, as
δB(H) = (½, 1, 0, 0), δF(H) = (0,½,½, 1), and thus
δT(H) = H .

Now let us consider the system ¬(Σ,p3). Remember
from the proof of Proposition 3 that stable interpretations for
the small system could be extended to stable interpretations
for the big system by plugging in the expected value for p¬.
So, in this particular case, the stable value for p3 is ½, so
we would expect that by extending H by H0(p¬) := ½, we
would get another stable interpretation.

But this is not the case, as the table of iterated values given
in Figure 1 shows. Note that H0 is not even recurring.

Disjunction Consider the pointer systems Σ and Σ∗ and
their disjunction (Σ,p4) ∨ (Σ∗,p∗1) given as follows:

p0 ← ¬p3, p∗0 ← ¬p∗3,
p1 ← p∗1, ← ,
p2 ← p∗2, ← ,
p3 ← p1 ∧ p2, p∗3 ← p∗1 ∧ p∗2,
p∗ ← p4 ∨ p∗1.

Note that Σ and Σ∗ are the same system up to isomorphism
and that Σ is the system from the previous example. We
already know that the interpretation H = (0, 1, 0,½) is δT-
stable (therefore, it is δT-stable for both Σ and Σ∗ in the
appropriate reading.

The natural extension of H to the full system
with nine propositional variables would be H∗0 :=
(0, 1, 0,½, 0, 1, 0,½,½), as p∗ should take the value
H(p4) ∨ H(p∗1) = ½ ∨ 0 = ½. However, we see in Fig-
ure 2 that this interpretation is not stable (or even recurring).



Discussion and future work
Testing the behaviour of our system on the liar sentence and
one additional example cannot be enough as an empirical
test of the adequacy of our system. After testing more exam-
ples and having developed some theoretical insight into the
system and its properties, we would consider testing the sys-
tem experimentally by designing situations in which people
reason about beliefs in self-referential situations with evi-
dence, and then compare the predictions of our system to
the actual behaviour of human agents.

Such an experimental test should not be done with just
one system, but with a class of systems. We have already
discussed that our choice of the connective ⊗ combining δB
and δF to δT was not unique. Similarly, the rules for how to
handle multiple solutions (“take the pointwise infimum”) in
the case of forward propagation are not the only way to deal
with this formally. One natural alternative option would be
to split the sequenceH∞ into multiple sequences if there are
multiple solutions. For instance, if we are trying to calculate
δF(H) and we have multiple solutions to the set of equa-
tions, then δF(H) becomes a set of interpretations (possibly
giving rise to different recurrences and stabilities, depend-
ing on which possibility you follow). There are many vari-
ants that could be defined, but the final arbiter for whether
these systems are adequate descriptions of reasoning pro-
cesses will have to be the experimental test.

References
Thomas Bolander. Logical Theories for Agent Introspec-
tion. PhD thesis, Technical University of Denmark, 2003.
David Christensen. Putting Logic in its place. Formal Con-
straints on Rational Belief. Oxford University Press, 2007.
Carlos Iván Chesñevar and Guillermo Ricardo Simari. A
lattice-based approach to computing warranted beliefs in
skeptical argumentation frameworks. 2007. In (Vel07, pp.
280–285).
Marian E. Counihan. Looking for logic in all the wrong
places: an investigation of language, literacy and logic in
reasoning. PhD thesis, Universiteit van Amsterdam, 2008.
ILLC Publications DS-2008-10.
Haim Gaifman. Operational pointer semantics: Solution
to self-referential puzzles I. In Moshe Y. Vardi, editor,
Proceedings of the 2nd Conference on Theoretical Aspects
of Reasoning about Knowledge, Pacific Grove, CA, March
1988, pages 43–59. Morgan Kaufmann, 1988.
Haim Gaifman. Pointers to truth. Journal of Philosophy,
89(5):223–261, 1992.
Anil Gupta and Nuel Belnap. The revision theory of truth.
MIT Press, 1993.
Sujata Ghosh, Benedikt Löwe, and Erik Scorelle. Belief
flow in assertion networks. In Uta Priss, Simon Polovina,
and Richard Hill, editors, Conceptual Structures: Knowl-
edge Architectures for Smart Applications, 15th Interna-
tional Conference on Conceptual Structures, ICCS 2007,
Sheffield, UK, July 22-27, 2007, Proceedings, volume 4604
of Lecture Notes in Computer Science, pages 401–414.
Springer, 2007.

Alan H. Goldman. A note on the conjunctivity of knowl-
edge. Analysis, 36:5–9, 1975.
Geoff Hulten, David Maxwell Chickering, and David
Heckerman. Learning Bayesian networks from depen-
dency networks: A preliminary study. In Christopher M.
Bishop and Brendan J. Frey, editors, Proceedings of the
Ninth International Workshop on Artificial Intelligence and
Statistics. Society for Artificial Intelligence and Statistics,
2003.
Aaron Hunter and James P. Delgrande. Iterated belief
change: A transition system approach. In Leslie Pack Kael-
bling and Alessandro Saffiotti, editors, IJCAI-05, Proceed-
ings of the Nineteenth International Joint Conference on
Artificial Intelligence, Edinburgh, Scotland, UK, July 30-
August 5, 2005, pages 460–465. Professional Book Center,
2005.
Aaron Hunter and James P. Delgrande. An action descrip-
tion language for iterated belief change. 2007. In (Vel07,
pp. 2498–2503).
Stanley Kok and Pedro Domingos. Learning the struc-
ture of markov logic networks. In Luc De Raedt and
Stefan Wrobel, editors, Proceedings of the 22nd Inter-
national Machine Learning Conference, pages 441–448.
ACM Press, 2005.
Kristian Kerstin and Luc De Raedt. Bayesian logic
programming: Theory and tool. In Lise Getoor and
Ben Taskar, editors, Introduction to Statistical Relational
Learning. MIT Press, 2007.
Henry Kyburg. Conjunctivitis. In Marshall Swain, editor,
Induction, Acceptance, and Rational Belief, pages 55–82.
Reidel, 1970.
Benedikt Löwe. Revision forever! In Henrik Schärfe,
Pascal Hitzler, and Peter Øhrstrøm, editors, Conceptual
Structures: Inspiration and Application, 14th International
Conference on Conceptual Structures, ICCS 2006, Aal-
borg, Denmark, July 16-21, 2006, Proceedings, volume
4068 of Lecture Notes in Computer Science, pages 22–36.
Springer, 2006.
Benjamin Schnieder. On what we can ensure. Synthese,
162:101–115, 2008.
Edward Stein. Without good reason. The rationality debate
in philosophy and cognitive science. Clarendon Library of
Logic and Philosophy. Clarendon Press, 1997.
Manuela M. Veloso, editor. Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence,
Hyderabad, India, January 6-12, 2007. AAAI Press, 2007.
Peter Wason. Reasoning about a rule. Quarterly Journal
of Experimental Psychology, 20(3):273–281, 1968.


