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Abstract 
In previous papers we presented a robot cognitive 
architecture organized in three computational areas. The 
subconceptual area is concerned with the processing of data 
coming from the sensors. In the linguistic area 
representation and processing are based on a logic-oriented 
formalism. The conceptual area is intermediate between the 
subconceptual and the linguistic areas and it is based on the 
notion of conceptual spaces. The robot, starting from the 3D 
information stored in the conceptual area and from the data 
coming form sensors and processed by the subconceptual 
area, is able to build a 2D viewer dependent reconstruction 
of the scene it is perceiving. This 2D model corresponds to 
what the robot is seeing at any given time. We suggest that 
the conceptual and the linguistic areas are at the basis of the 
robot artificial qualia. 

Introduction   
It has been questioned if robots may have qualia, i.e., 
qualitative, phenomenal experiences in the sense discussed, 
among others, by Chalmers (1996).  
We are not interested in the problem of establishing 
whether robots can have real phenomenal experiences or 
not. For our present concerns, speak of robot’s “artificial 
qualia” in a sense similar to Aleksander (1996). We use 
this expression in a somewhat metaphorical sense: we call 
“artificial quale” a state that in some sense corresponds to 
the “phenomenal” experience of the robot, without making 
any hypothesis concerning the fact that the robot truly 
experiences it.  
In previous papers (Chella et al. 1997, 2000) we presented 
a robot cognitive architecture organized in three 
computational areas - a term which is reminiscent of the 
cortical areas in the brain.  
The subconceptual area is concerned with the processing 
of data coming from the sensors. Here information is not 
yet organized in terms of conceptual structures and 
categories. From the point of view of the artificial vision, 
this area includes all the processes that extract the 3D 
model of the perceived scene. In the linguistic area 
representation and processing are based on a logic-oriented 
formalism. We adopt the term “linguistic” instead of the 
overloaded term “symbolic”, because we want to stress the 
                                                
Copyright © 2008, The Second Conference on Artificial General 
Intelligence (agi-09.org). All rights reserved. 
 

reference to formal languages in the knowledge 
representation tradition.  
The conceptual area is intermediate between the 
subconceptual and the linguistic areas. Here, data is 
organized in conceptual “gestaltic” structures, that are still 
independent of any linguistic description. The symbolic 
formalism of the linguistic area is interpreted on 
aggregation of these structures. 
We suggest that the conceptual and the linguistic areas are 
at the basis of the robot artificial qualia. In our model, the 
robot, starting from the 3D information stored in the 
conceptual area and from the data coming form sensors 
and processed by the subconceptual area, is able to build a 
2D, viewer dependent reconstruction of the scene it is 
perceiving. This 2D model corresponds to what the robot is 
seeing at any given time. Its construction is an active 
process, driven by both the external flow of information 
and the inner model of the world.  

The Cognitive Architecture 
The proposed architecture (Fig. 1) is organized in 
computational “areas”. In our model, the areas are 
concurrent computational components working together on 
different commitments. There is no privileged direction in 
the flow of information among them: some computations 
are strictly bottom-up, with data flowing from the 
subconceptual up to the linguistic through the conceptual 
area; other computations combine top-down with bottom-
up processing.  

 

 
 

Figure 1: The cognitive architecture 



Conceptual Spaces 
The conceptual area, as previously stated, is the area 
between the subconceptual and the linguistic area. This 
area is based on the theory of conceptual spaces 
(Gärdenfors 2000).  
Conceptual spaces provide a principled way for relating 
high level, linguistic formalisms with low level, 
unstructured representation of data. A conceptual space CS 
is a metric space whose dimensions are the quantities 
generated as outputs of computational processes occurring 
in the subconceptual area, e.g., the outputs of the neural 
networks in the subconceptual area. Different cognitive 
tasks can presuppose different conceptual spaces, and 
different conceptual spaces can be characterized by 
different dimensions. Examples of possible dimensions, 
with reference to object perception tasks, are: color 
components, shape parameters, spatial coordinates, motion 
parameters, and so on. In general, dimensions are strictly 
related to the results of measurements obtained by sensors. 
In any case, dimensions do not depend on any specific 
linguistic description. In this sense, conceptual spaces 
come before any symbolic of propositional characterization 
of cognitive phenomena.  
We use the term knoxel to denote a point in a conceptual 
space. The term knoxel (in analogy with the term pixel) 
stresses the fact that a point in CS is the knowledge 
primitive element at the considered level of analysis. 
The conceptual space CS acts as a workspace in which 
low-level and high-level processes access and exchange 
information respectively from bottom to top and from top 
to bottom. However, the conceptual space is a workspace 
with a precise geometric structure of metric space and also 
the operations in CS are geometrics: this structure allow us 
to describe the functionalities of the robot awareness in 
terms of the language of geometry. 
It has been debated if visual perception is based on a 3D 
representation, as presupposed by Marr (Marr 1982). In the 
present architecture, we maintain the Marrian approach, 
according to which our knoxel corresponds to a moving 3D 
shape.  
 
 

 
Figure 2: Superquadric shapes obtained by changing the 
form factors. 

Object and Scene Representation 
In (Chella et al. 1997) we assumed that, in the case of static 
scenes, a knoxel k coincides with a 3D primitive shape, 
characterized according to Constructive Solid Geometry 
(CSG) schema. In particular, we adopted superquadrics 
(Jaklič et at. 2000) as the primitive of CSG. Superquadrics 
allow us to deal with a compact description of the objects 
in the perceived scene. This approach is an acceptable 
compromise between the compression of information in 
the scene and the necessary computational costs  
Moreover, superquadrics provide good expressive power 
and representational adequacy. 
Superquadrics are geometric shapes derived from the 
quadric parametric equation with the trigonometric 
functions raised to two real exponents. Fig. 2 shows the 
shape of a superquadric obtained by changing its form 
factors.  
In order to represent composite objects that cannot be 
reduced to single knoxels, we assume that they correspond 
to groups of knoxels in CS. For example, a chair can be 
naturally described as the set of its constituents, i.e., its 
legs, its seat and so on.  
Fig. 3 (left) shows a hammer composed by two 
superquadrics, corresponding to its handle and to its head. 
Fig. 3 (right) shows a picture of how hammers are 
represented in CS. The concept hammer consists of a set of 
pairs, each of them is made up of the two components of a 
specific hammer, i.e., its handle and its head.  
 
 

    
 
 
Figure 3: A hammer made up by two superquadrics and its 
representation in the conceptual space. 
 

Dynamic scenes 
In order to account for the perception of dynamic scenes, 
we choose to adopt an intrinsically dynamic conceptual 
space. It has been hypothesized that simple motions are 
categorized in their wholeness, and not as sequences of 
static frames. In other words, we assume that simple 
motions of geometrically primitive shapes are our 
perceptual primitives for motion perception.  



In our dynamic conceptual space, a knoxel now 
corresponds to a “generalized” simple motion of a 
superquadric. By “generalized” we mean that the motion 
can be decomposed in a set of components each of them 
associated with a degree of freedom of the moving 
superquadric.  
A way of doing this, is suggested by the well known 
Discrete Fourier Transform (DFT). Given a parameter of 
the superquadric, e.g., ax, consider the function of time 
ax(t); this function can be seen as the superimposition of a 
discrete number of trigonometric functions. This allows the 
representation of ax(t) in a discrete functional space, whose 
basis functions are trigonometric functions. 
By a suitable composition of the time functions of all 
superquadric parameters, the overall function of time 
describing superquadrics parameters may be represented in 
its turn in a discrete functional space. We adopt the 
resulting functional space as our dynamic conceptual 
space. This new CS can be taught as an “explosion” of the 
space in which each main axis is split in a number of new 
axes, each one corresponding to a harmonic component.  In 
this way, a point k in the CS now represents a superquadric 
along with its own simple motion. This new CS is also 
consistent with the static space: a quiet superquadric will 
have its harmonic components equal to zero. 
In Fig. 4 (left) a static CS is schematically depicted; Fig. 4 
(right) shows the dynamic CS obtained from it. In the CS 
on the left, axes represent superquadric parameters; in the 
rightmost figure each of them is split in the group of axes, 
that represent the harmonics of the corresponding 
superquadric parameter.  
 
 
 
 

  
Figure 4: An evocative, pictorial representation of the 
static and dynamic conceptual spaces. 
 

Situations and Actions 
Let us consider a scene made up by the robot itself along 
with other entities, like objects and persons. Entities may 
be approximated by one or more superquadrics. Consider 
the robot moving near an object. We call situation this kind 
of scene. It may be represented in CS by the set of the 

knoxels corresponding to the simple motions of its 
components, as in Fig. 5 (left) where ka corresponds to an 
obstacle object, and kb corresponds to the moving robot. 
A situation is therefore a configuration of knoxels that 
describe a state of affairs perceived by the robot. We can 
also generalize this concept, by considering that a 
configuration in CS may also correspond to a  scene 
imagined or remembered by the robot.  
For example, a suitable imagined situation may correspond 
to a goal, or to some dangerous state of affairs, that the 
robot must figure out in order to avoid it. We added a 
binary valuation that distinguish if the knoxel is effectively 
perceived, or it is imagined by the robot.  In this way, the 
robot represents both its perceptions and its imaginations in 
conceptual space.  
In a perceived or imagined situation, the motions in the 
scene occur simultaneously, i.e., they correspond to a 
single configuration of knoxels in the conceptual space.  
To consider a composition of several motions arranged 
according to a temporal sequence, we introduce the notion 
of action: an action corresponds to a “scattering” from one 
situation to another situation in the conceptual space, as in 
Fig. 5 (right).  
We assume that the situations within an action are 
separated by instantaneous events. In the transition 
between two subsequent configurations, a “scattering” of 
some knoxels occur. This corresponds to a discontinuity in 
time that is associated to an instantaneous event. 
The robot may perceive an action passively when it sees 
some changes in the scene, e.g., a person in the robot 
environment changing her position. More important, the 
robot may be the actor of the action itself, when it moves 
or when it interacts with the environment, e.g., when it 
pushes an object. In both cases, an action corresponds to a 
transition from a situation to another.  
 
 
 
 

Figure 5: An example of situation and action in CS. 
 

Linguistic Area 
The representation of situations and actions in the 
linguistic area is based on a high level, logic oriented 
formalism. The linguistic area acts as a sort of “long term 
memory”, in the sense that it is a semantic network of 
symbols and their relationships related with the robot 
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perceptions and actions. The linguistic area also performs 
inferences of symbolic nature. 
In the current implementation, the linguistic area is based 
on a hybrid KB in the KL-ONE tradition (Brachman and 
Schmoltze 1985). A hybrid formalism in this sense is 
constituted by two different components: a terminological 
component for the description of concepts, and an 
assertional component, that stores information concerning 
a specific context. 
In the domain of robot actions, the terminological 
component contains the description of relevant concepts 
such as Situation, Action, Time_instant, and so on.  
In general, we assume that the description of the concepts 
in the symbolic KB is not completely exhaustive. We 
symbolically represent only that information that is 
necessary for inferences.  
The assertional component contains facts expressed as 
assertions in a predicative language, in which the concepts 
of the terminological components correspond to one 
argument predicates, and the roles (e.g. precond, part_of) 
correspond to two argument relations. 
 
 

 
Figure 6. A fragment of the adopted KB. 

 
 
Fig. 6 shows a fragment of the terminological knowledge 
base; in order to increase the readability, we adopted a 
graphical notation of the kind used by (Brachman and 
Schmoltze 1985). In the upper part of the figure some 
highly general concept is represented. In the lower part, the 
Avoid concept is shown, as an example of the description 
of an action in the terminological KB. 
Every Situation has a starting and an ending instant. So, the 
concept Situation is related to Time_instant by the roles 
start and end. A Robot is an example of a moving object. 
Also actions have a start instant and an end instant. An 
Action involves a temporal evolution (a scattering in CS). 
Actions  have at least two parts, that are Situations not 
occurring simultaneously: the precond (i.e., the 
precondition) and the effect of the action itself. 
An example of Action is Avoid. According to the KB 
reported in the figure, the precondition of Avoid is a 
Blocked_path situation, to which participate the robot and 

a blocking object. The effect of the Avoid action is a 
Free_path situation. 
In general, we assume that the description of the concepts 
in the symbolic KB (e.g. Blocked_path) is not completely 
exhaustive. We symbolically represent only that 
information that is necessary for inferences.  
The assertional component contains facts expressed as 
assertions in a predicative language, in which the concepts 
of the terminological components correspond to one 
argument predicates, and the roles (e.g. precond, part_of) 
correspond to two argument relations. For example, the 
following predicates describe that the instance of the action 
Avoid has as a precondition the instance of the situation 
Blocked_path and it has as an effect the situation 
Free_path:  
 
Avoid(av1) 
precond(av1, bl1) 
effect(av1, fr1) 
Blocked_path(bl1) 
Free_path(fr1) 
 
The linguistic area is the area where the robot interacts 
with the user: the user may performs queries by using the 
symbolic language in order to orient the actions, for 
example, the user may ask the robot to search for an object.  
The user may performs queries by using the symbolic 
language in order to orient the actions, for example, the 
user may ask the robot to search for an object.  
Moreover, the system may generate assertions describing 
the robot current state, its perceptions, its planned actions, 
and so on. However, the terms in our linguistic area are 
strictly “anchored” to knoxels in the conceptual area, in the 
sense that the meaning of the terms in the linguistic area is 
represented by means of the corresponding knoxels in the 
conceptual area. Therefore, in our architecture, symbolic 
terms are strictly related with the robot visual perceptions. 
The role of language is to “summarize” the dynamics of 
the knoxels at the conceptual area. 

Artificial Qualia 
It has been questioned if robot may have “qualia”, i.e., 
qualitative, phenomenal experience.  In our opinion it 
should be more correct to talk about the robot “artificial 
qualia” in the sense of (Aleksander 1996), so the problem 
is: during its mission tasks,  has the robot some 
phenomenal experience? 
In the proposed architecture, we have shown that the basis 
of the robot perception is the conceptual area, where the 
perceived scene is represented in terms of knoxels that 
describe the shape and the motion of the perceived entities, 
and the linguistic area where the scene is represented in 
terms of linguistic entities that summarize the dynamics of 
the knoxels in the conceptual space. 
Now, we introduce an iconic area where a 2D 
reconstruction of the scene is built as a geometric 
projection of the knoxels in its conceptual space (where the 



information about the scene is maintained in 3D) and from 
the data coming form sensors and processed by the 
subconceptual area.  
 

 
 
Figure 7. The revised architecture with the 2D iconic area 
and the perception loop. 
 
Fig. 7 shows the robot architecture revisited to take into 
account the iconic area: in the revised architecture there is 
a perception loop between the conceptual area where the 
knoxels are represented, the iconic area and the 
subconceptual area. This perception loop has the role to 
adjust the match between the 2D iconic representation of 
the scene obtained from the knoxels in the conceptual area, 
and the external flow of perception data coming out from 
the subconceptual area. 
We present the operation of the revised architecture with 
reference to the CiceRobot robotic project, an operating 
autonomous robot performing guided tours at the 
Archaeological Museum of Agrigento (Chella & Macaluso 
2008). 
 
 

 
Figure 8. The initial distribution of expected robot 
positions (left), and the cluster of winning expected 
positions, highlighted by the arrow. 
 
In order to compare the CS content with the external 
environment by the iconic area, the robot is equipped with 
a stochastic match algorithm based on particle filter (see, 
e.g.,  Thrun et al. 2005; details are reported in Chella & 

Macaluso 2008). In brief, the algorithm generates a cloud 
of hypothesized possible positions of the robot (Fig. 8). For 
each position, the corresponding expected image scene is 
generated in the iconic area by means of geometric 
projection operations of the corresponding knoxels in CS. 
The generated image is then compared with the acquired 
image (Fig. 9). 

 
 
Figure 9. The 2D image from the robot video camera (left) 
and the corresponding 2D image generated in the iconic 
area by the knoxels of CS (right). 
 
An error measure ε of the match is computed between the 
expected and the effective image scene.  The error ε 
weights the expected position under consideration by 
considering the distribution of the vertical edges in the 
generated and the acquired images (mathematical details in 
Chella & Macaluso 2008). In subsequent steps, only the 
winning expected positions that received the higher weigh 
are taken, while the other ones are dropped.  

 
 
 
Figure 10. The image acquired by the robot camera along 
with the vertical edges and their distribution (left). The 
simulated image from CS corresponding to the hypothesis 
with the highest weight. (center) A simulated image 
corresponding to an hypothesis with a lesser weight (right). 
 
When the image generated in the iconic area matches with 
the image acquired from the robot camera, the knoxels in 
CS corresponding to the winning image are highlighted: 
they give rise to the description of the perceived scene by 

 
 

Fig. 4. The 2D image output of the robot video camera (left) and the corresponding image 
generated by the simulator (right).  

 
Fig. 4 shows the 2D image S as output of the robot video camera (left) and the 

corresponding image S’ generated by the simulator (right) by re-projecting in 2D the 3D 
information from the current point of view of the robot. 

The comparator block c compares the two images of Fig. 4 by using elastic templates 
matching [2]. In the current implementation, features are long vertical edges extracted 
from the camera image. Spatial relations between edges’ midpoints are used to locate 
each edge in the simulated image and compute the relative distortion between the 
expected and the effective scene. The relative distortion is a measure of the error ε related 
to the differences between the expected image scene and the effective scene. As 
previously stated, this error is sent back to the simulator in order to correct the robot 
position in the 3D simulator. 

 

 
 

Fig. 5. The operation of the particle filter. The initial distribution of expected robot 
positions (left), and the cluster of winning expected positions (right).  

4 Experimental results 

In order to test the proposed architecture we compared the operations of the robot 
equipped with the described system with the operations of the robot driven by the 
odometric information only.  



means of the knowledge stored in the CS and the linguistic 
area, as described in previous Sects. As an example, in the 
situation described in Fig. 9, the assertional component of 
the KB generates the predicates stating that the robot is in a 
free path, and there is an armchair in front and on the right, 
and there is a column on the left: 
 
Free_path(p1) 
Armchair(a1) 
Armchair(a2) 
Column(c1) 
Right_of(robot, a2) 
Front_of(robot, a1) 
Left_of(robot, c1) 
 
We propose that the described reconstruction and match 
process constitutes the phenomenal experience of the 
robot, i.e., what the robot sees at a given instant. This kind 
of seeing is an active process, since it is a reconstruction of 
the inner percept in ego coordinates, but it is also driven by 
the external flow of information. It is the place in which a 
global consistency is checked between the internal model 
and the visual data coming from the sensors (Gaglio et al. 
1984).  
The synthesized pictures of the world so generated projects 
back in the external space the geometrical information 
contained in the knoxels in the conceptual space and, 
matched to incoming sensor data, it accounts for the 
understanding of the perceptive conscious experience. 
There is no need for a homunculus that observes it, since it 
is the ending result of an active reconstruction process, 
which is altogether conscious to the robot, which sees 
according to its own geometric (not yet linguistic) 
interpretation.  
The phenomenal experience is therefore the stage in which 
the two flows of information, the internal and the external, 
compete for a consistent match by the particle filter 
algorithm. There a strong analogy with the phenomenology 
in human perception: when one perceives the objects of a 
scene he actually experiences only the surfaces that are in 
front of him, but at the same time he builds a geometric 
interpretation of the objects in their whole shape. In 
“gestaltian” terms, the robot in the described example 
perceives the whole armchairs and columns and not their 
visible sides only. 

Conclusions 
According to the “quantum reality hypothesis” proposed 
by (Goertzel 2006), the described conceptual space has 
some similarities with the Goertzel internal virtual 
multiverse, in the sense that the CS is able to generate 
possible worlds and possible sequences and branches of 
events. Also the described match operation between the 
image acquired by the camera and the 2D reconstructed 
image from the iconic area may be seen as a sort of 
“collapse” of the several possible situations and actions in 
CS to a single perceived situation. Related ideas have been 

proposed by Edelman (1989), Humphrey (1992) and Grush 
(2004). 
The described model of robot perceptual phenomenology 
highlights open problems from the point of view of the 
computational requirements. The described architecture 
requires that the 3D reconstruction of the dynamic scenes 
and the match with the scene perceived by the robot during 
its tasks should be computed in real time. At the current 
state of the art in computer vision and computer graphics 
literature, this requirement may be satisfied only in case of 
simplified scenes with a few objects where all the motions 
are slow.  
However, we maintain that our proposed architecture is a 
good starting point to investigate robot phenomenology. As 
described in the paper it should be remarked that a robot 
equipped with artificial phenomenology performs complex 
tasks better and more precisely than an “unconscious” 
reactive robot.  
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