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Abstract
The general intelligence of any autonomous system must in 
large part be measured by its ability to automatically learn 
new skills and integrate these with prior skills.  Cognitive 
architectures  addressing  these  topics  are  few  and  far 
between – possibly because of their difficulty. We argue that 
architectures  capable  of  diverse  skill  acquisition  and 
integration, and real-time management of these, require an 
approach  of  modularization  that  goes  well  beyond  the 
current practices, leading to a class of architectures we refer 
to  as  peewee-granule  systems.  The  building  blocks 
(modules)  in  such  systems  have  simple  operational 
semantics and result in architectures that are heterogeneous 
at the cognitive level but homogeneous at the computational  
level.

Introduction
Looking at the software architecture of present large-scale 
AI  systems  reveals  a  rather  clear  picture:  A majority  is 
built  on  principles  of  standard  industrial  software 
component methodologies. As we have argued elsewhere 
[7,9]  such  methodologies  do  not  support  sufficient 
architectural  flexibility  when  it  comes  to  building 
intelligent  systems,  in  large  part  because  they  do  not 
support  well  incremental  expansion  or  automated 
architectural construction.  We have developed a method 
for intelligent system construction, Constructionist Design 
Methodology  (CDM)  [10],  that  produces  cognitive 
architectures exhibiting greater flexibly in expansion than 
typical  of  architectures  of  similar  size  [8]  and  better 
support for system integration [5]. In the last few years we 
have been moving towards architectures built out of ever-
smaller components, or modules. Here we discuss what we 
see as a general trend towards “peewee”-granule systems – 
architectures with very small-grain components – and why 
we see this as a promising direction for artificial general 
intelligence. 

Medium Granularity in Ymir / CDM
Ymir is a cognitive proto-architecture [11] from which the 
CDM was originally derived. One of Ymir's advantages is 
its  addressing  multiple  skill  integration  in  a  realtime-
capable system with multimodal  output generation. Over 
the last decade the principles of Ymir and CDM have been 

used to build several relatively large systems including a 
multimodal  realtime  interactive  character,  a  realtime 
dialogue system [2]  and a  cognitive  architecture  for  the 
Honda ASIMO robot [5]. These systems, all based on the 
idea of a fairly large set of small functional units (called 
modules,  each  typically  less  than  100  lines  of  code) 
interacting via blackboards, were developed incrementally 
according to the development steps set forth in the CDM. 
In  Ymir  modules  are  loosely  coupled  through  message 
passing;  messages  are  semantically  self-describing  (the 
content  of  modules'  inputs and outputs is  explicit  in  the 
message types). Typically a module's function lies at the 
cognitive  level;  any  psychologically  distinguishable 
behavior (e.g. taking turns in dialogue, reaching to grasp an 
object, etc.) is done through cooperation/interaction of 50-
80 such modules. Ymir postulates three priority layers of 
modules, each layer having a particular upper bound on the 
perception-action  loop  time:  The  Reactive  Layer  with  ~ 
100 - 400 msecs; the Process Control Layer with ~ 400 - 
2000 msecs; and the Content Layer from 2k msecs and up. 
Ideally, modules are stateless (state is completely contained 
in  the  historical  flow  of  messages);  however,  we  have 
found that it is difficult to stay away from saving state in 
some subset of a system's modules. 

The  important  benefits  of  Ymir's  CDM  principles  and 
medium-granularity include better scaling of performance, 
increased  breadth  and  more  organizational  flexibility  at 
runtime,  as  reported  for  numerous  systems  (e.g. 
[2,5,7,8,10]).  While  recent  work  has  shown  Ymir-like 
architectures to be able to learn dynamically at runtime [2], 
runtime changes in Ymir-style architectures at present do 
not involve new functions (in terms of new modules); they 
are limited to changes in the behaviors of, and interactions 
between, already-existing modules. If we want to achieve 
complex,  evolving  systems  that  can  self-improve 
significantly over  time,  however,  automatic  synthesis of 
new  components  must  be  made  possible.  Automatic 
management of self-improvement – via  reorganization of  
the architecture itself – can only be achieved by giving the 
system  instructions  on  how  to  measure  its  own 
performance and providing it with methods for introducing 
architectural changes to improve its own performance on 
those measures.  Such  models of self are very difficult to 
achieve  in  systems  built  with  known  software 



methodologies – as well as the CDM. This leads us to the 
importance of computational homogeneity.

Towards Peewee Granularity
As shown with Ymir's priority layers [11] (see also [6]) the 
role  of  structures  is  to  implement  observation/control 
feedback  loops;  the  scale  of  complexity  levels  is  thus 
closely linked to the scale of response times: we need to 
exert  a  fine  control  over  the  process  synthesis  to  tune 
accurately  its  constituents  (sub-structures  and  sub-
processes)  at  any  relevant  scale.  Control  accuracy  over 
processes and process construction can be achieved only if 
(a) the granularity of program interaction is as fine as the 
size of the smallest model and (b) the execution time of 
models  is  much  lower  than  the  program interaction  the 
models  intend  to  control.  For  systems  with  shortest 
cognitive  response  times  (typically  250-500  msecs)  this 
may mean grains of no longer than a few CPU cycles long.

Ikon  Flux  is  a  proto-architecture  for  building  fully 
autonomous  systems  [3].  The details  of  Ikon  Flux  have 
been described elsewhere; here we will discuss two of its 
most salient traits, computational homogeneity and peewee 
granularity  (very  small  modules).  Ikon  Flux  has  been 
designed  to  build  systems  that  embody  a  continuous 
process of  architectural  (re-)synthesis.  Such  systems  are 
engaged  –  in  realtime  –  in  observation/control  loops  to 
steer the evolution of their own structures and processes 
over short and long time horizons. In Ikon Flux, structures 
and processes  result  from a bottom-up synthesis  activity 
scaffolded by top-down models: it finds its raw material in 
low-level  axioms  (commands  from/to  sensors/actuators, 
programming  skills,  etc.)  while  being  regulated  and 
structured by (initially) man-made bootstrap code. As Ikon 
Flux systems expand in functionality and scope the models 
necessary to control synthesis grow in complexity; to cover 
the  whole  spectrum  of  a  system’s  operation  they  must 
encompass  both  low-level  and  higher-order  structures/ 
processes. An autonomous system has thus to evolve these 
heterogeneous models over time along a quasi-continuous 
scale of complexity levels. It is a practical impossibility to 
implement an architectural model for each of these levels – 
which  in  most  cases  cannot  be  known  in  advance. 
However, providing a uniform model that can self-improve 
is  a  challenge  since  the  operational  semantics  grow 
significantly in complexity with the atomic set of system 
operations  (module  types).  This  can  be  solved  by 
employing  a  homogenous  computational  substrate 
consisting  of  a  small  amount  of  atomic  operational 
elements,  each  of  peewee  size.  In  Ikon  Flux  these  are 
rewrite  terms.  Systems built  in  Ikon Flux grow massive 
amounts  of  (stateless)  concurrent  rewriting  programs 
organized to allow composition of structures/processes of 
arbitrary  size  and  architecture.  Other  research  has 
acknowledged  the  need  for  computational  homogeneity 
(cf. [1,4]), albeit to a lesser extent than Ikon Flux. 

Architectures  like  Ymir  [2,5,11]  and  others  [1,4]  have 
shown the benefits of medium-size granularity. While these 
systems can be expanded in performance, such expansion 
tends  to  be  linear,  due  to  an  operational  semantics 
complexity barrier. Ikon Flux presents a next step towards 
massive  amounts of  small  components,  embodying 
hundreds  of  thousands  of  peewee-size  modules [3].  Yet 
Ikon Flux demonstrates  cognitive heterogeneity on top of 
this  computationally homogeneous substrate.  As a result, 
systems built  in Ikon Flux exhibit  deep learning of  new 
skills  and  integration  of  such  skills  into  an  existing 
cognitive architecture. We believe peewee granularity is a 
promising way to simplify operational semantics and reach 
a  computational  homogeneity  that  can  enable  automated 
architectural growth – which in itself is a  necessary step 
towards  scaling  of  cognitive  skills exhibited  by  current 
state-of-the-art architectures. Only this way will we move 
more quickly towards artificial general intelligence. 
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