Relevance Based Planning: Why Its a Core Process for AGI

Eric B. Baum

Baum Research Enterprises
41 Allison Road
Princeton NJ 08540
ebaum @fastmail.fm

Abstract

Relevance Based Planning (RBP) is a general method that
plans in interaction with a domain simulation and domain
specialized procedures. I argue that exploitation of the
properties of causality and Euclidean topology which hold in
many domains is a critical inductive bias necessary if an AGI
(or any intelligent program) is to generalize to new problems
and new domains, and is critical to human thought, and that
RBP achieves its efficiency by exploiting these properties in a
novel and powerful way, faithful to introspection in an
example task. RBP is proposed to be implemented as a
scaffold within an AGI or a CAD tool for producing intelligent
programs, that is to say as a general library procedure that
takes as inputs domain specialized procedures such as a
domain simulation and procedures for recognizing and dealing
with problems within the simulation. Supplied with such
procedures as inputs, the RBP scaffold provides a framework
that orchestrates plan formation and refinement in such a way
that only causally relevant configurations are considered.

Introduction

The critical question in AGI is generalization: how one
can generalize to solve new problems never before seen.
Consider figure 1. You may never have seen this Rube
Goldberg image before, but given a few minutes you can
work out how and whether it works, and if there were a
problem could suggest a fix. More generally, you can learn
in a few minutes or years, to solve generic problems in
whole new domains, for example new games or new
employment. The learning is remarkably fast, given the
complexity of the endeavor, and once one has learned, the
solution often happens in real time. Each such new domain
(or, arguably, new problem) requires rapidly constructing a
novel, powerful program within your mind and executing
it to solve new problems. I suggest that the only way this is
possible is because you exploit in constructing and
applying these mental programs certain underlying
structure and properties of the domains (causality,
Euclidean 3-D topology, etc); for example to analyze the
Rube Goldberg device, that you construct and run a mental
simulation of the system, and that doing this requires
retrieving and rapidly putting together special purpose
procedures that know how (or at least roughly how) to
exploit causality and apply mental simulations, and
procedures to analyze local structure, for example methods

to simulate bird flight or ball rolling. The solving process
follows causal chains, and may never bother to analyze the
faucet because causal chains never reach it. An extensive
literature indicates that human reasoning is model based
(cf (Johnson-Laird 1983).

I further conjecture (a) that a program to perform such
feats is naturally composed of scaffolds that take
specialized procedures as arguments, for example a
scaffold for handling the causal propagation and the
interaction with a simulation domain, that takes as
arguments procedures such as for recognizing and dealing
with specific kinds of obstacles in specific domains. If one
achieves a breakup like this, into general scaffold and
specialized' procedures as inputs, then one can imagine
gaining a concisely specified program that can generalize
to rapidly construct programs dealing with new
circumstances. And I conjecture (b) that the structure of
such scaffolds can be informed by introspection.

Relevance Based Planning(RBP) is a procedure that
attempts to reproduce these aspects of thought. It is unlike
any planning algorithm that I am aware of in the literature
in its use of a simulation model and special purpose

1| refer to these as domain specialized to reflect the they
might be adapted or inherit from more general
procedures, which would further facilitate learning and
generalization to new domains.

procedures for simulating or dealing with local structures,
and in its fidelity to introspection at least in examples of
Sokoban where I have experimented. It was designed by
initially introspecting how I solve simple problems within
Sokoban and then abstracting the procedure to a high level
process that handles the causality, use of simulation
domain, and backup when problems are encountered, by
use of domain specific procedures recognizing and dealing
with various kinds of domain specific objects.
Here is some high level pseudo-code for RBP:

(1) Find high level plans by search or dynamic
programming over a simulation model, in which the search
is over sequences of domain-appropriate operations, for
example plans that allow counterfactual steps (steps that
apply an action or stored procedure that would be
applicable only if some obstacle in the simulation model
may be corrected, where the obstacle is of a type that is
known may be remediable). A high level plan then consists
of a sequential-in-time series of subgoals (or obstacles to
be overcome) that if solved should result in a solution.

(2) Refine one of these candidate plans in time order.

(3) As each obstacle in the plan is considered, invoke a
(specialized) method that attempts to deal with the
obstacle. The method typically performs some search on
the simulation domain (and may invoke or even
recursively call RBP).

Such calls to clearing methods typically pass
information about higher level goals within the plan, and
the called clearing method may then avoid searching a set
of actions to remove the obstacle that would have as
prerequisite previously achieving a higher level goal.

(4) If the search encounters other problems that would
require earlier actions, (problematic configurations in the
simulation domain that are perceived by agents for
recognizing them) insert earlier in the plan an attempt to
perform those actions first (typically by invoking a stored
method for dealing with that kind of obstacle).

(5) When changes are made in the domain simulation,
mark them, so that if they encumber later actions, you can
back up and try to insert the later actions first to avoid the
problem.

(6) Utilize a method of backing up to other high level plans
when it is discovered that a high level plan can not be
made to work, or of switching between high level plans as
more information is uncovered about them.

RBP illustrates the power of using a domain simulation.
It forms a high level plan over the simulation. Then it
analyzes it in interaction with the simulation. As modules
are executed to solve problems, the interaction with the
simulation creates patterns that summon other
modules/agents to solve them. This all happens in a causal
way: things being done on the simulation cause other
things to be done, and because the simulation realizes the
underlying causal structure of the world, this causal
structure is grounded. That is, it corresponds to reality. The
RBP framework also focuses the search to consider only

quantities causally relevant to fixing problems.

Many planning methods choose not to work in time
order for various good reasons(Russell and Norvig 375-
461). But by working on a candidate plan in time order,
RBP is assured, at the inner most loops of the program, of
only spending time considering positions that can be
reached, and which are causally relevant to a high level
plan. Introspection sometimes works out of time order on
causally local regions of a problem, which are later
interleaved in a causal (and time-sequential) fashion. As
discussed in (Baum 2008a) this can be to an extent handled
within RBP at a higher level.

(Baum 2008a) describes RBP in more detail, giving a
step by step walk-through of a particular example of the
application within the domain of Sokoban, and another
example (at a higher level goal within Sokoban) is
sketched. To formalize the pseudo-code to any given
domain or problem within a domain, requires supplying
various procedures that say what the obstacles are and how
they are dealt with, what deadlock configurations look like,
what counter-factuals are permitted, etc. In complex
situations it is expected that some of these will be too hard
to be hand coded, and will instead be produced by learning
from examples using module constructors such as
Evolutionary Economic Systems (Baum, 2008b).

If an RBP scaffold is provided, it can be made accessible
to module constructors within an AGI or CAD tool, so that
new programs can be automatically constructed, evolved,
or learned that invoke the RBP. An example where an RBP
planner was used in this way was given in (Schaul 2005).

A larger meta-goal of the project described in (Baum
2008b) is to construct Occam programs, programs that are
coded in extremely concise fashion so that they generalize
to new problems as such problems arise (or so that the
programs can be rapidly modified, say by a search through
meaningful modifications, to solve new problems). Search
programs can be incredibly concisely coded, so that coding
as an interaction of a number of search programs can be a
mode of achieving great conciseness. RBP's construction
of a program by composing a series of feasible-sized goal
oriented searches mirrors the basic structure of biological
development (cf (Baum 2008b)), and is similarly concisely
coded and robust.

References

Baum, Eric B. 2008a. Relevance Based Planning: A Worked
Example. http://www.whatisthought.com/planning.pdf .

Baum, Eric B. 2008b. Project to Build Programs That
Understand. Proceedings of AGI09 (this volume)
http://www.whatisthought.com/agipaper091.pdf .

Johnson-Laird, P. 1983. Mental Models. Harvard University
Press, Cambridge Ma.

Russell, S. and P. Norvig 2003. Artificial Intelligence: A Modern
Approach. Prentice-Hall, Saddle-River NJ.

Schaul, T. 2005. Evolution of a compact Sokoban solver. Master
Thesis, Ecole Polytechnique Fédérale de Lausanne. posted on
http://whatisthought.com/eric.html

http://www.whatisthought.com/planning.pdf
http://whatisthought.com/eric.html
http://www.whatisthought.com/agipaper091.pdf

