
Analytical Inductive Programming as a
Cognitive Rule Acquisition Devise∗

Ute Schmid and Martin Hofmann and Emanuel Kitzelmann
Faculty Information Systems and Applied Computer Science

University of Bamberg, Germany
{ute.schmid, martin.hofmann, emanuel.kitzelmann}@uni-bamberg.de

Abstract

One of the most admirable characteristic of the hu-
man cognitive system is its ability to extract gener-
alized rules covering regularities from example expe-
rience presented by or experienced from the environ-
ment. Humans’ problem solving, reasoning and verbal
behavior often shows a high degree of systematicity
and productivity which can best be characterized by a
competence level reflected by a set of recursive rules.
While we assume that such rules are different for dif-
ferent domains, we believe that there exists a general
mechanism to extract such rules from only positive ex-
amples from the environment. Our system Igor2 is an
analytical approach to inductive programming which
induces recursive rules by generalizing over regularities
in a small set of positive input/output examples. We
applied Igor2 to typical examples from cognitive do-
mains and can show that the Igor2 mechanism is able
to learn the rules which can best describe systematic
and productive behavior in such domains.

Introduction
Research in inductive programming is concerned with
the design of algorithms for synthesis of recursive
programs from incomplete specifications such as in-
put/output examples of the desired program behav-
ior, possibly together with a set of constraints about
size or time complexity (Biermann, Guiho, & Kodratoff
1984; Flener 1995). In general, there are two distinct
approaches to inductive programming – search-based
generate-and-test algorithms (Olsson 1995; Quinlan &
Cameron-Jones 1995) and data-driven analytical algo-
rithms (Summers 1977; Kitzelmann & Schmid 2006).
In the first case, given some language restriction, hy-
pothetical programs are generated, tested against the
specification and modified until they meet some given
criteria. In the second case, regularities in the in-
put/output examples are identified and a generalized
structure is built over the examples. While search-
based approaches – in principle – can generate each pos-
sible program and therefore might be able to find the

∗Research was supported by the German Research Com-
munity (DFG), grant SCHM 1239/6-1.
Copyright c© 2008, The Second Conference on Artificial
General Intelligence (AGI-09.org). All rights reserved.

desired one given enough time, analytical approaches
have a more restricted language bias. The advantage of
analytical inductive programming is that programs are
synthesized very fast, that the programs are guaranteed
to be correct for all input/output examples and fulfill
further characteristics such as guaranteed termination
and being minimal generalizations over the examples.
The main goal of inductive programming research is to
provide assistance systems for programmers or to sup-
port end-user programming (Flener & Partridge 2001).

From a broader perspective, analytical inductive pro-
gramming provides algorithms for extracting general-
ized sets of recursive rules from small sets of positive
examples of some behavior. Such algorithms can there-
fore be applied not only to input/output examples de-
scribing the behavior of some program but to arbi-
trary expressions. Taking this standpoint, analytical
inductive programming provides a general device for
the acquisition of generalized rules in all such domains
where it is natural that people are typically exposed to
only positive examples. This is, for example, the case
in learning correct grammatical constructions where a
child would never get explicitly exposed to scrambled
sentences (such as house a is this).

In the sixties, Chomsky proposed that the human
mind possesses a language acquisition device (LAD)
which allows us to extract grammar rules from the lan-
guage experience we are exposed to (Chomsky 1959;
1965). Input to this device are the linguistic experi-
ences of a child, output is a grammar reflecting the
linguistic competence. The concept of an LAD can be
seen as a special case of a general cognitive rule ac-
quisition device. Unfortunately, this idea became quite
unpopular (Levelt 1976): One reason is, that only per-
formance and not competence is empirically testable
and therefore the idea was only of limited interest to
psycho-linguists. Second, Chomsky (1959) argued that
there “is little point in speculating about the process of
acquisition without much better understanding of what
is acquired” and therefore linguistic research focussed
on search for a universal grammar. Third, the LAD
is concerned with learning and learning research was
predominantly associated with Skinner’s reinforcement
learning approach which clearly is unsuitable as a lan-

guage acquisition device since it explains language ac-
quisition as selective reinforcement of imitation.

Since the time of the original proposal of the LAD
there was considerable progress in the domain of ma-
chine learning (Mitchell 1997) and we propose that it
might be worthwhile to give this plausible assumption
of Chomsky a new chance. The conception of inductive
biases (Mitchell 1997) introduced in machine learning,
namely restriction (i.e. language) and preference (i.e.
search) bias might be an alternative approach to the
search of a universal grammar: Instead of providing a
general grammatical framework from which each spe-
cific grammar – be it for a natural language or for some
other problem domain – can be derived, it might be
more fruitful to provide a set of constraints (biases)
which characterize what kinds of rule systems are learn-
able by humans. Since we are interested in a mechanism
to induce general, typically recursive, rules and not in
classification learning, we propose to investigate the po-
tential of analytical inductive programming as such a
general rule acquisition device. Furthermore, we pro-
pose to take a broader view of Chomsky’s idea of an
LAD and we claim that rule acquisition in that fashion
is not only performed in language learning but in all
domains where humans acquire systematic procedural
knowledge such as problem solving and reasoning.

In the following we give a short overview of our an-
alytical inductive programming system Igor2 together
with its biases. Then we illustrate Igor2’s ability
as a cognitive rule acquisition device in the domains
of problem solving, reasoning, and natural language
processing.1

Recursive Structure Generalization

Igor2 (Kitzelmann 2008) was developed as a succes-
sor to the classical Thesys system for learning Lisp
programs from input/output examples (Summers 1977)
and its generalization Igor1 (Kitzelmann & Schmid
2006). To our knowledge, Igor2 is currently the most
powerful system for analytical inductive programming.
Its scope of inducable programs and the time efficiency
of the induction algorithm compares well with inductive
logic programming and other approaches to inductive
programming (Hofmann, Kitzelmann, & Schmid 2008).
The system is realized in the constructor term rewriting
system Maude Therefore, all constructors specified for
the data types used in the given examples are available
for program construction. Since Igor2 is designed as
an assistant system for program induction, it relies on
small sets of noise-free positive input/output examples
and it cannot deal with uncertainty. Furthermore, the
examples have to be the first inputs with respect to the
complexity of the underlying data type. Given these
restrictions, Igor2 can guarantee that the induced pro-
gram covers all examples correctly and provides a min-
imal generalization over them. Classification learning

1The complete data sets and results can be found on
www.cogsys.wiai.uni-bamberg.de/effalip/download.html.

for noise-free examples such as PlayTennis (Mitchell
1997) can be performed as a special case (Kitzelmann
2008).

Igor2 specifications consist of such a set of exam-
ples together with a specification of the input data
type. Background knowledge for additional functions
can (but needs not) be provided. Igor2 can induce
several dependent target functions (i.e., mutual recur-
sion) in one run. Auxiliary functions are invented if
needed. In general, a set of rules is constructed by gen-
eralization of the input data by introducing patterns
and predicates to partition the given examples and syn-
thesis of expressions computing the specified outputs.
Partitioning and search for expressions is done system-
atically and completely which is tractable even for rela-
tive complex examples because construction of hypothe-
ses is data-driven. Igor2’s restriction bias is the set of
all functional recursive programs where the outermost
function must be either non-recursive or provided as
background knowledge.

Igor2’s built-in preference bias is to prefer fewer case
distinctions, most specific patterns and fewer recursive
calls. Thus, the initial hypothesis is a single rule per
target function which is the least general generalization
of the example equations. If a rule contains unbound
variables on its right-hand side, successor hypotheses
are computed using the following operations: (i) Par-
titioning of the inputs by replacing one pattern by a
set of disjoint more specific patterns or by introduc-
ing a predicate to the right-hand side of the rule; (ii)
replacing the right-hand side of a rule by a (recursive)
call to a defined function where finding the argument of
the function call is treated as a new induction problem,
that is, an auxiliary function is invented; (iii) replacing
sub-terms in the right-hand side of a rule which contain
unbound variables by a call to new subprograms.

Problem Solving
Often, in cognitive psychology, speed-up effects in prob-
lem solving are modelled simply as composition of prim-
itive rules as a result of their co-occurrence during prob-
lem solving, e.g., knowledge compilation in ACT (An-
derson & Lebière 1998) or operator chunking in SOAR
(Rosenbloom & Newell 1986). Similarly, in AI planning
macro learning was modelled as composition of prim-
itive operators to more complex ones (Minton 1985;
Korf 1985). But, there is empirical evidence that hu-
mans are able to acquire general problem solving strate-
gies from problem solving experiences, that is, that gen-
eralized strategies are learned from sample solutions.
For example, after solving Tower of Hanoi problems, at
least some people have acquired the recursive solution
strategy (Anzai & Simon 1979). Typically, experts are
found to have superior strategic knowledge in contrast
to novices in a domain (Meyer 1992).

There were some proposals to the learning of do-
main specific control knowledge in AI planning (Shell &
Carbonell 1989; Shavlik 1990; Mart́ın & Geffner 2000).
All these approaches proposed to learn cyclic/recursive

Problem domain:

puttable(x)

PRE: clear(x), on(x, y)

EFFECT: ontable(x), clear(y), not on(x,y)

Problem Descriptions:

: init-1 clear(A), ontable(A)

: init-2 clear(A), on(A, B), ontable(B)

: init-3 on(B, A), clear(B), ontable(A)

: init-4 on(C, B), on(B, A), clear(C), ontable(A)

: goal clear(a)

Problem Solving Traces/Input to Igor2

fmod CLEARBLOCK is

*** data types, constructors

sorts Block Tower State .

op table : -> Tower [ctor] .

op __ : Block Tower -> Tower [ctor] .

op puttable : Block State -> State [ctor] .

*** target function declaration

op ClearBlock : Block Tower State -> State [metadata "induce"] .

*** variable declaration

vars A B C : Block .

var S : State .

*** examples

eq ClearBlock(A, A table, S) = S .

eq ClearBlock(A, A B table, S) = S .

eq ClearBlock(A, B A table, S) = puttable(B, S) .

eq ClearBlock(A, C B A table, S) = puttable(B, puttable(C, S)) .

endfm

Figure 1: Initial experience with the clearblock problem

control rules which reduce search. Learning recursive
control rules, however, will eliminate search completely.
With enough problem solving experience, some gener-
alized strategy, represented by a set of rules (equivalent
to a problem solving scheme) should be induced which
allows a domain expert to solve this problem via appli-
cation of his/her strategic knowledge. We already tried
out this idea using Igor1 (Schmid & Wysotzki 2000).
However, since Igor1 was a two-step approach where
examples had to be first rewritten into traces and af-
terwards recurrence detection was performed in these
traces, this approach was restricted in its applicabil-
ity. With Igor2 we can reproduce the results of Igor1

on the problems clearblock and rocket faster and with-
out specific assumptions to preprocessing and further-
more can tackle more complex problem domains such
as building a tower in the blocks-world domain.

The general idea of learning domain specific problem
solving strategies is that first some small sample prob-
lems are solved by means of some planning or problem
solving algorithm and that then a set of generalized
rules are learned from this sample experience. This set
of rules represents the competence to solve arbitrary
problems in this domain. We illustrate the idea of our
approach with the simple clearblock problem (see Fig-
ure 1). A problem consists of a set of blocks which are
stacked in some arbitrary order. The problem solving
goal is that one specific block – in our case A – should

Clearblock (4 examples, 0.036 sec)

ClearBlock(A, (B T), S) = S if A == B

ClearBlock(A, (B T), S) =

ClearBlock(A, T, puttable(B, S)) if A =/= B

Rocket (3 examples, 0.012 sec)

Rocket(nil, S) = move(S) .

Rocket((O Os), S) = unload(O, Rocket(Os, load(O, S)))

Tower (9 examples of towers with up to four blocks, 1.2 sec)

(additionally: 10 corresponding examples for Clear and IsTower pred-

icate as background knowledge)

Tower(O, S) = S if IsTower(O, S)

Tower(O, S) =

put(O, Sub1(O, S),

Clear(O, Clear(Sub1(O, S),

Tower(Sub1(O, S), S)))) if not(IsTower(O, S))

Sub1(s(O), S) = O .

Tower of Hanoi (3 examples, 0.076 sec)

Hanoi(0, Src, Aux, Dst, S) = move(0, Src, Dst, S)

Hanoi(s D, Src, Aux, Dst, S) =

Hanoi(D, Aux, Src, Dst,

move(s D, Src, Dst,

Hanoi(D, Src, Dst, Aux, S)))

Figure 2: Learned Rules in Problem Solving Domains

be cleared such that no block is standing above it. We
use predicates clear(x), on(x, y), and ontable(x) to rep-
resent problem states and goals. The only available
operator is puttable: A block x can be put on the table
if it is clear (no block is standing on it) and if it is not
already on the table but on another block. Application
of puttable(x) has the effect that block x is on the table
and the side-effect that block y gets cleared if on(x, y)
held before operator application. The negative effect is
that x is no longer on y after application of puttable.

We use a PDDL-like notation for the problem domain
and the problem descriptions. We defined four differ-
ent problems of small size each with the same problem
solving goal (clear(A)) but with different initial states:
The most simple problem is the case where A is already
clear. This problem is presented in two variants – A is
on the table and A is on another block – to allow the
induction of a clearblock rule for a block which is posi-
tioned in an arbitrary place in a stack. The third initial
state is that A is covered by one block, the fourth that
A is covered by two blocks. A planner might be pre-
sented with the problem domain – the puttable operator
– and problem descriptions given in Figure 1.

The resulting action sequences can be obtained by
any PDDL planner (Ghallab, Nau, & Traverso 2004)
and rewritten to Igor2 (i.e. Maude) syntax. When
rewriting plans to Maude equations (see Figure 1) we
give the goal, that is, the name of the block which
is to be cleared, as first argument. The second ar-
gument represents the initial state, that is, the stack
as list of blocks and table as bottom block. The
third argument is a situation variable (McCarthy 1963;

Manna & Waldinger 1987; Schmid & Wysotzki 2000)
representing the current state. Thereby plans can be
interpreted as nested function applications and plan ex-
ecution can be performed on the content of the situation
variable. The right-hand sides of the example equations
correspond to the action sequences which were con-
structed by a planner, rewritten as nested terms with
situation variable S as second argument of the puttable
operator. Currently, the transformation of plans to ex-
amples for Igor2 is done “by hand”. For a fully au-
tomated interface from planning to inductive program-
ming, a set of rewrite rules must be defined.

Given the action sequences for clearing a block up
to three blocks deep in a stack as initial experience,
Igor2 generalizes a simple tail recursive rule system
which represents the competence to clear a block which
is situated in arbitrary depth in a stack (see Figure
2). That is, from now on, it is no longer necessary
to search for a suitable action sequence to reach the
clearblock goal. Instead, the generalized knowledge can
be applied to produce the correct action sequence di-
rectly. Note, that Igor2 automatically introduced the
equal predicate to discern cases where A is on top of
the stack from cases where A is situated farther below
since these cases could not be discriminated by disjoint
patterns on the left-hand sides of the rules.

A more complex problem domain is rocket (Veloso
& Carbonell 1993). This domain was originally pro-
posed to demonstrate the need of interleaving goals.
The problem is to transport a number of objects from
earth to moon where the rocket can only fly in one di-
rection. That is, the problem cannot be solved by first
solving the goal at(o1, moon) by loading it, moving it
to the moon and then unloading it. Because with this
strategy there is no possibility to transport further ob-
jects from earth to moon. The correct procedure is first
to load all objects, then to fly to the moon and finally
to unload the objects. Igor2 learned this strategy from
examples for zero to two objects (see Figure 2).

A most challenging problem domain which is still
used as a benchmark for planning algorithms is blocks-
world. A typical blocks-world problem is to build a
tower of some blocks in some prespecified order. With
evolutionary programming, an iterative solution pro-
cedure to this problem was found from 166 examples
(Koza 1992). The found strategy was to first put all
blocks on the table and than build the tower. This
strategy is clearly not efficient and cognitively not very
plausible. If, for example, the goal is a tower on(A, B),
on(B, C) and the current state is on(C, B), on(B,A),
even a young child will first put C on the table and
then directly put B on C and not put B on the ta-
ble first. Another proposal to tackle this problem is to
learn decision rules which at least in some situations
can guide a planner to select the most suitable action
(Mart́ın & Geffner 2000). With the learned rules, 95.5%
of 1000 test problems were solved for 5-block problems
and 72.2% of 500 test problems were solved for 20-block
problems. The generated plans, however, are about two

eq Tower(s s table,

((s s s s table) (s table) table | ,

(s s s table) (s s table) table | , nil)) =

put(s s table, s table,

put(s s s table, table,

put(s s s s table, table,

((s s s s table) (s table) table | ,

(s s s table) (s s table) table | , nil)))) .

Figure 3: One of the nine example equations for tower

steps longer than the optimal plans. In Figure 2 we
present the rules Igor2 generated from only nine ex-
ample solutions. This rule system will always produce
the optimal action sequence.

To illustrate how examples were presented to Igor2

we show one example in Figure 3. The goal is to con-
struct a tower for some predefined ordering of blocks.
To represent this ordering, blocks are represented con-
structively as “successors” to the table with respect to
the goal state (| representing the empty tower). There-
fore the top object of the to be constructed tower is
given as first argument of the tower function. If the top
object is s s s table, the goal is to construct a tower
with three blocks with s table on the table, s s table on
s table and s s s table on s s table. The second argu-
ment again is a situation variable which initially holds
the initial state. In the example in Figure 3 s s table
(we may call it block 2) shall be the top object and the
initial state consists of two towers, namely block 4 on
block 1 and block 3 on block 2. That is, the desired
output is the plan to get the tower block 2 on block 1.
Therefore blocks 1 and 2 have to be cleared, these are
the both innermost puts, and finally block 2 has to be
stacked on block 1 (block 1 lies on the table already),
this is the out-most put.

In addition to the tower example, Igor2 was given an
auxiliary function IsTower as background knowledge.
This predicate is true if the list of blocks presented to
it are already in the desired order. Furthermore, we did
not learn the Clear function used in tower but presented
some examples as background knowledge.

Finally, the recursive solution to the Tower of Hanoi
problem was generated by Igor2 from three examples
(see Figure 2). The input to Igor2 is given in Figure
4.

For the discussed typical problem solving domains
Igor2 could infer the recursive generalizations very fast
and from small example sets. The learned recursive
rule systems represent the strategic knowledge to solve
all problems of the respective domains with a minimal
number of actions.

Reasoning

A classic work in the domain of reasoning is how hu-
mans induce rules in concept learning tasks (Bruner,
Goodnow, & Austin 1956). Indeed, this work has in-
spired the first decision tree algorithms (Hunt, Marin,

eq Hanoi(0, Src, Aux, Dst, S) =

move(0, Src, Dst, S) .

eq Hanoi(s 0, Src, Aux, Dst, S) =

move(0, Aux, Dst,

move(s 0, Src, Dst,

move(0, Src, Aux, S))) .

eq Hanoi(s s 0, Src, Aux, Dst, S) =

move(0, Src, Dst,

move(s 0, Aux, Dst,

move(0, Aux, Src,

move(s s 0, Src, Dst,

move(0, Dst, Aux,

move(s 0, Src, Aux,

move(0, Src, Dst, S))))))) .

Figure 4: Posing the Tower of Hanoi problem for Igor2

Ancestor (9 examples, 10.1 sec)

(and corresponding 4 examples for IsIn and Or)

Ancestor(X, Y, nil) = nilp .

Ancestor(X, Y, node(Z, L, R)) =

IsIn(Y, node(Z, L, R)) if X == Z .

Ancestor(X, Y, node(Z, L, R)) =

Ancestor(X, Y, L) Or Ancestor(X, Y, R) if X =/= Z .

Corresponding to:

ancestor(x,y) = parent(x,y).

ancestor(x,y) = parent(x,z), ancestor(z,y).

isa(x,y) = directlink(x,y).

isa(x,y) = directlink(x,z), isa(z,y).

Figure 5: Learned Transitivity Rules

& Stone 1966). This work addressed simple conjunc-
tive or more difficult to acquire disjunctive concepts.
However, people are also able to acquire and correctly
apply recursive concepts such as ancestor, prime num-
ber, member of a list and so on.

In the following, we will focus on the concept of an-
cestor which is often used as standard example in in-
ductive logic programming (Lavrač & Džeroski 1994).
The competence underlying the correct application of
the ancestor concept, that is, correctly classifying a per-
son as ancestor of some other person, in our opinion is
the correct application of the transitivity relation in
some partial ordering. We believe that if a person has
grasped the concept of transitivity in one domain, such
as ancestor, this person will also be able to correctly
apply it in other, previously unknown domains. For ex-
ample, such a person should be able to correctly infer
is-a relations in some ontology. We plan to conduct
a psychological experiment with children to strengthen
this claim.

For simplicity of modeling, we used binary trees as
domain model. For trees with arbitrary branching fac-
tor, the number of examples would have to be increased
significantly. The transitivity rule learned by Igor2 is
given in Figure 5.

original grammar (in the very original grammar, d n v are non-

terminals D N V which go to concrete words)

S -> NP VP

NP -> d n

VP -> v NP | v S

examples

fmod GENERATOR is

*** types

sorts Cat CList Depth .

ops d n v : -> Cat [ctor] .

op ! : -> CList [ctor] .

op __ : Cat CList -> CList [ctor] .

op 1 : -> Depth [ctor] .

op s_ : Depth -> Depth [ctor] .

*** target fun declaration

op Sentence : Depth -> CList [metadata "induce"] .

*** examples

eq Sentence(1) = (d n v d n !) .

eq Sentence(s 1) = (d n v d n v d n !) .

eq Sentence(s s 1) = (d n v d n v d n v d n !) .

learned grammar rules (3 examples, 0.072 sec)

Sentence(1) = (d n v d n !)

Sentence(s N) = (d n v Sentence(N))

Figure 6: Learning a Phrase-Structure Grammar

Natural Language Processing

Finally, we come back to Chomsky’s claim of an LAD.
We presented Igor2 with examples to learn a phrase-
structure grammar. This problem is also addressed
in grammar inference research (Sakakibara 1997). We
avoided the problem of learning word-category associa-
tions and provided examples abstracted from concrete
words (see Figure 6). This, in our opinion, is legiti-
mate since word categories are learned before complex
grammatical structures are acquired. There is empiri-
cal evidence that children first learn rather simple Pivot
grammars where the basic word categories are sys-
tematically positioned before they are able to produce
more complex grammatical structures (Braine 1963;
Marcus 2001).

The abstract sentence structures correspond to sen-
tences as (Covington 1994):

1: The dog chased the cat.

2: The girl thought the dog chased the cat.

3: The butler said the girl thought the dog chased the cat.

4: The gardener claimed the butler said the girl thought the dog

chased the cat.

The recursive rules can generate sentences for an ar-
bitrary depth which is given as parameter. Igor2 can
also learn more complex rules, for example allowing for
conjunctions of noun phrases or verb phrases. In this
case, a nested numerical parameter can be used to spec-
ify at which position conjunctions in which depth can
be introduced. Alternatively, a parser could be learned.
Note that the learned rules are simpler than the original
grammar but fulfill the same functionality.

Conclusion

Igor2 is a rather successful system for analytical in-
ductive programming. Up to now we applied Igor2 to
typical programming problems (Hofmann, Kitzelmann,
& Schmid 2008). In this paper we showed that ana-
lytical inductive programming is one possible approach
to model a general cognitive rule acquisition device and
we successfully applied Igor2 to a range of prototypical
problems from the domains of problem solving, reason-
ing, and natural language processing. Analytical in-
ductive programming seems a highly suitable approach
to model the human ability to extract generalized rules
from example experience since it allows fast general-
ization from very small sets of only positive examples
(Marcus 2001). We want to restrict Igor2 to such do-
mains where it is natural to provide positive examples
only. Nevertheless, to transform Igor2 from a induc-
tive programming to an AGI system, in future we need
to address the problem of noisy data as well as the prob-
lem of automatically transforming traces presented by
other systems (a planner, a reasoner, a human teacher)
into Igor2 specifications.

References
Anderson, J. R., and Lebière, C. 1998. The atomic com-
ponents of thought. Mahwah, NJ: Lawrence Erlbaum.

Anzai, Y., and Simon, H. 1979. The theory of learning by
doing. Psychological Review 86:124–140.

Biermann, A. W.; Guiho, G.; and Kodratoff, Y., eds. 1984.
Automatic Program Construction Techniques. New York:
Macmillan.

Braine, M. 1963. On learning the gramamtical order of
words. Psychological Review 70:332–348.

Bruner, J. S.; Goodnow, J. J.; and Austin, G. A. 1956. A
Study of Thinking. New York: Wiley.

Chomsky, N. 1959. Review of Skinner’s ‘Verbal Behavior’.
Language 35:26–58.

Chomsky, N. 1965. Aspects of the Theory of Syntax. Cam-
bridge, MA: MIT Press.

Covington, M. A. 1994. Natural Language Processing for
Prolog Programmers. Prentice Hall.

Flener, P., and Partridge, D. 2001. Inductive program-
ming. Automated Software Engineering 8(2):131–137.

Flener, P. 1995. Logic Program Synthesis from Incomplete
Information. Boston: Kluwer Academic Press.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.

Gold, E. 1967. Language identification in the limit. Infor-
mation and Control 10:447–474.

Hofmann, M.; Kitzelmann, E.; and Schmid, U. 2008. Anal-
ysis and evaluation of inductive programming systems in
a higher-order framework. In Dengel, A. et al., eds., KI
2008: Advances in Artificial Intelligence, number 5243 in
LNAI, 78–86. Berlin: Springer.

Hunt, E.; Marin, J.; and Stone, P. J. 1966. Experiments
in Induction. New York: Academic Press.

Kitzelmann, E., and Schmid, U. 2006. Inductive synthe-
sis of functional programs: An explanation based general-

ization approach. Journal of Machine Learning Research
7(Feb):429–454.

Kitzelmann, E. 2008. Analytical inductive functional pro-
gramming. In Hanus, M., ed., Pre-Proceedings of LOPSTR
2008, 166–180.

Korf, R. E. 1985. Macro-operators: a weak method for
learning. Artificial Intelligence, 1985 26:35–77.

Koza, J. 1992. Genetic programming: On the programming
of computers by means of natural selection. Cambridge,
MA: MIT Press.

Lavrač, N., and Džeroski, S. 1994. Inductive Logic Pro-
gramming: Techniques and Applications. London: Ellis
Horwood.

Levelt, W. 1976. What became of LAD? Lisse: Peter de
Ridder Press.

Manna, Z., and Waldinger, R. 1987. How to clear a block: a
theory of plans. Journal of Automated Reasoning 3(4):343–
378.

Marcus, G. F. 2001. The Algebraic Mind. Integrating Con-
ncetionism and Cognitive Science. Bradford.

Mart́ın, M., and Geffner, H. 2000. Learning generalized
policies in planning using concept languages. In Proc. KR
2000, 667–677. San Francisco, CA: Morgan Kaufmann.

McCarthy, J. 1963. Situations, actions, and causal
laws. Memo 2, Stanford University Artificial Intelligence
Project, Stanford, California.

Meyer, R. 1992. Thinking, Problem Solving, Cognition,
second edition. Freeman.

Minton, S. 1985. Selectively generalizing plans for problem-
solving. In Proc. IJCAI-85, 596–599. San Francisco, CA:
Morgan Kaufmann.

Mitchell, T. M. 1997. Machine Learning. New York:
McGraw-Hill.

Olsson, R. 1995. Inductive functional programming using
incremental program transformation. Artificial Intelligence
74(1):55–83.

Quinlan, J., and Cameron-Jones, R. 1995. Induction of
logic programs: FOIL and related systems. New Genera-
tion Computing 13(3-4):287–312.

Rosenbloom, P. S., and Newell, A. 1986. The chunking
of goal hierarchies: A generalized model of practice. In
Michalski, R. S.; Carbonell, J. G.; and Mitchell, T. M.,
eds., Machine Learning - An Artificial Intelligence Ap-
proach, vol. 2. Morgan Kaufmann. 247–288.

Sakakibara, Y. 1997. Recent advances of grammatical
inference. Theoretical Computer Science 185:15–45.

Schmid, U., and Wysotzki, F. 2000. Applying inductive
programm synthesis to macro learning. In Proc. AIPS
2000, 371–378. AAAI Press.

Shavlik, J. W. 1990. Acquiring recursive and iterative con-
cepts with explanation-based learning. Machine Learning
5:39–70.

Shell, P., and Carbonell, J. 1989. Towards a general
framework for composing disjunctive and iterative macro-
operators. In Proc. IJCAI-89. Morgan Kaufman.

Summers, P. D. 1977. A methodology for LISP program
construction from examples. Journal ACM 24(1):162–175.

Veloso, M. M., and Carbonell, J. G. 1993. Derivational
analogy in Prodigy: Automating case acquisition, storage,
and utilization. Machine Learning 10:249–278.

