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Abstract
Feature Markov Decision Processes (ΦMDPs) [Hut09] are
well-suited for learning agents in general environments.
Nevertheless, unstructured (Φ)MDPs are limited to rela-
tively simple environments. Structured MDPs like Dynamic
Bayesian Networks (DBNs) are used for large-scale real-
world problems. In this article I extend ΦMDP to ΦDBN.
The primary contribution is to derive a cost criterion that al-
lows to automatically extract the most relevant features from
the environment, leading to the “best” DBN representation.
I discuss all building blocks required for a complete general
learning algorithm.

Introduction
Agents. The agent-environment setup in which an Agent
interacts with an Environment is a very general and prevalent
framework for studying intelligent learning systems [RN03].
In cycles t = 1,2,3,..., the environment provides a (regular)
observation ot∈O (e.g. a camera image) to the agent; then
the agent chooses an action at∈A (e.g. a limb movement);
finally the environment provides a real-valued reward rt∈IR
to the agent. The reward may be very scarce, e.g. just +1
(-1) for winning (losing) a chess game, and 0 at all other
times [Hut05, Sec.6.3]. Then the next cycle t+1 starts. The
agent’s objective is to maximize his reward.
Environments. For example, sequence prediction is con-
cerned with environments that do not react to the agents
actions (e.g. a weather-forecasting “action”) [Hut03], plan-
ning deals with the case where the environmental function is
known [RPPCd08], classification and regression is for con-
ditionally independent observations [Bis06], Markov Deci-
sion Processes (MDPs) assume that ot and rt only depend
on at−1 and ot−1 [SB98], POMDPs deal with Partially Ob-
servable MDPs [KLC98], and Dynamic Bayesian Networks
(DBNs) with structured MDPs [BDH99].
Feature MDPs [Hut09]. Concrete real-world problems
can often be modeled as MDPs. For this purpose, a de-
signer extracts relevant features from the history (e.g. po-
sition and velocity of all objects), i.e. the history ht =
a1o1r1...at−1ot−1rt−1ot is summarized by a feature vector
st :=Φ(ht). The feature vectors are regarded as states of an
MDP and are assumed to be (approximately) Markov.

Artificial General Intelligence (AGI) [GP07] is concerned
with designing agents that perform well in a very large

range of environments [LH07], including all of the men-
tioned ones above and more. In this general situation, it is
not a priori clear what the useful features are. Indeed, any
observation in the (far) past may be relevant in the future. A
solution suggested in [Hut09] is to learn Φ itself.

If Φ keeps too much of the history (e.g. Φ(ht)=ht), the
resulting MDP is too large (infinite) and cannot be learned.
If Φ keeps too little, the resulting state sequence is not
Markov. The Cost criterion I develop formalizes this trade-
off and is minimized for the “best” Φ. At any time n, the
best Φ is the one that minimizes the Markov code length of
s1...sn and r1...rn. This reminds but is actually quite differ-
ent from MDL, which minimizes model+data code length
[Grü07].
Dynamic Bayesian networks. The use of “unstructured”
MDPs [Hut09], even our Φ-optimal ones, is clearly limited
to relatively simple tasks. Real-world problems are struc-
tured and can often be represented by dynamic Bayesian net-
works (DBNs) with a reasonable number of nodes [DK89].
Bayesian networks in general and DBNs in particular are
powerful tools for modeling and solving complex real-world
problems. Advances in theory and increase in computa-
tion power constantly broaden their range of applicability
[BDH99; SDL07].
Main contribution. The primary contribution of this work
is to extend the Φ selection principle developed in [Hut09]
for MDPs to the conceptually much more demanding DBN
case. The major extra complications are approximating,
learning and coding the rewards, the dependence of the Cost
criterion on the DBN structure, learning the DBN structure,
and how to store and find the optimal value function and
policy.

Although this article is self-contained, it is recommended
to read [Hut09] first.

Feature Dynamic Bayesian Networks (ΦDBN)
In this section I recapitulate the definition of ΦMDP from
[Hut09], and adapt it to DBNs. While formally a DBN is just
a special case of an MDP, exploiting the additional structure
efficiently is a challenge. For generic MDPs, typical algo-
rithms should be polynomial and can at best be linear in the
number of states |S|. For DBNs we want algorithms that
are polynomial in the number of features m. Such DBNs



have exponentially many states (2O(m)), hence the standard
MDP algorithms are exponential, not polynomial, in m. De-
riving poly-time (and poly-space!) algorithms for DBNs
by exploiting the additional DBN structure is the challenge.
The gain is that we can handle exponentially large structured
MDPs efficiently.
Notation. Throughout this article, log denotes the binary
logarithm, and δx,y = δxy =1 if x=y and 0 else is the Kro-
necker symbol. I generally omit separating commas if no
confusion arises, in particular in indices. For any z of suit-
able type (string,vector,set), I define string z=z1:l =z1...zl,
sum z+=

∑
jzj , union z∗=

⋃
jzj , and vector z•=(z1,...,zl),

where j ranges over the full range {1,...,l} and l = |z| is
the length or dimension or size of z. ẑ denotes an estimate
of z. The characteristic function 11B = 1 if B=true and 0
else. P(·) denotes a probability over states and rewards or
parts thereof. I do not distinguish between random variables
Z and realizations z, and abbreviation P(z) := P[Z = z]
never leads to confusion. More specifically, m ∈ IN de-
notes the number of features, i ∈ {1,...,m} any feature,
n ∈ IN the current time, and t ∈ {1,...,n} any time. Fur-
ther, due to space constraints at several places I gloss over
initial conditions or special cases where inessential. Also
0∗undefined=0∗infinity:=0.
ΦMDP definition. A ΦMDP consists of a 7 tu-
pel (O,A,R,Agent,Env,Φ,S) = (observation space, action
space, reward space, agent, environment, feature map, state
space). Without much loss of generality, I assume that A
and O are finite and R⊆ IR. Implicitly I assume A to be
small, while O may be huge.

Agent and Env are a pair or triple of interlocking functions
of the history H :=(O×A×R)∗×O:

Env : H×A×R ; O, on = Env(hn−1an−1rn−1),
Agent : H ; A, an = Agent(hn),

Env : H×A ; R, rn = Env(hnan).

where ; indicates that mappings → might be stochastic.
The informal goal of AI is to design an Agent() that achieves
high (expected) reward over the agent’s lifetime in a large
range of Env()ironments.

The feature map Φ maps histories to states

Φ : H → S, st = Φ(ht), ht = oar1:t−1ot ∈ H
The idea is that Φ shall extract the “relevant” aspects of
the history in the sense that “compressed” history sar1:n≡
s1a1r1...snanrn can well be described as a sample from
some MDP (S,A,T,R) = (state space, action space, transi-
tion probability, reward function).
(Φ) Dynamic Bayesian Networks are structured (Φ)MDPs.
The state space is S = {0,1}m, and each state s ≡ x ≡
(x1,...,xm)∈S is interpreted as a feature vector x=Φ(h),
where xi=Φi(h) is the value of the ith binary feature. In the
following I will also refer to xi as feature i, although strictly
speaking it is its value. Since non-binary features can be
realized as a list of binary features, I restrict myself to the
latter.

Given xt−1 =x, I assume that the features (x1
t ,...,x

m
t )=

x′ at time t are independent, and that each x′i depends only

on a subset of “parent” features ui ⊆ {x1,...,xm}, i.e. the
transition matrix has the structure

T a
xx′ = P(xt = x′|xt−1 = x, at−1 = a) =

m∏
i=1

Pa(x′i|ui)
(1)

This defines our ΦDBN model. It is just a ΦMDP with
special S and T . Explaining ΦDBN on an example is easier
than staying general.

ΦDBN Example
Consider an instantiation of the simple vacuum world
[RN03, Sec.3.6]. There are two rooms, A and B, and a vac-
uum Robot that can observe whether the room he is in is
Clean or Dirty; Move to the other room, Suck, i.e. clean
the room he is in; or do Nothing. After 3 days a room
gets dirty again. Every clean room gives a reward 1, but
a moving or sucking robot costs and hence reduces the re-
ward by 1. Hence O = {A,B}×{C,D}, A = {N,S,M},
R={−1,0,1,2}, and the dynamics Env() (possible histories)
is clear from the above description.
Dynamics as a DBN. We can model the dynamics by a
DBN as follows: The state is modeled by 3 features. Fea-
ture R∈{A,B} stores in which room the robot is, and fea-
ture A/B ∈ {0,1,2,3} remembers (capped at 3) how long
ago the robot has cleaned room A/B last time, hence S =
{0,1,2,3}×{A,B}×{0,1,2,3}. The state/feature transition
is as follows:

if (xR=A and a=S) then x′A=0 else x′A=min{xA+1, 3};
if (xR=B and a=S) then x′B=0 else x′B=min{xB+1, 3};
if a=M (if xR=B then x′R=A else x′R=B) else x′R=xR;

A DBN can be viewed as a two-layer Bayesian network
[BDH99]. The dependency structure of our example is de-
picted in the right diagram.
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Each feature consists of a (left,right)-
pair of nodes, and a node i ∈ {1,2,3 =
m}=̂{A,R,B} on the right is connected to
all and only the parent features ui on the
left. The reward is

r = 11xA<3 + 11xB<3 − 11a6=N

The features map Φ = (ΦA,ΦR,ΦB) can
also be written down explicitly. It depends
on the actions and observations of the last 3 time steps.
Discussion. Note that all nodes x′i can implicitly also de-
pend on the chosen action a. The optimal policies are rep-
etitions of action sequence S,N,M or S,M,N . One might
think that binary features xA/B ∈{C,D} are sufficient, but
this would result in a POMDP (Partially Observable MDP),
since the cleanness of room A is not observed while the
robot is in room B. That is, x′ would not be a (proba-
bilistic) function of x and a alone. The quaternary feature
xA∈{0,1,2,3} can easily be converted into two binary fea-
tures, and similarly xB . The purely deterministic example
can easily be made stochastic. For instance, Sucking and
Moving may fail with a certain probability. Possible, but
more complicated is to model a probabilistic transition from
Clean to Dirty. In the randomized versions the agent needs
to use its observations.



ΦDBN Coding and Evaluation
I now construct a code for s1:n given a1:n, and for r1:n given
s1:n and a1:n, which is optimal (minimal) if s1:nr1:n given
a1:n is sampled from some MDP. It constitutes our cost func-
tion for Φ and is used to define the Φ selection principle for
DBNs. Compared to the MDP case, reward coding is more
complex, and there is an extra dependence on the graphical
structure of the DBN.

Recall [Hut09] that a sequence z1:n with counts n =
(n1,...,nm) can within an additive constant be coded in

CL(n) := n H(n/n) + m′−1
2 log n if n>0 and 0 else

(2)
bits, where n = n+ = n1 + ...+nm and m′ = |{i : ni >
0}|≤m is the number of non-empty categories, and H(p):=
−

∑m
i=1pilogpi is the entropy of probability distribution p.

The code is optimal (within +O(1)) for all i.i.d. sources.
State/Feature Coding. Similarly to the ΦMDP case, we
need to code the temporal “observed” state=feature se-
quence x1:n. I do this by a frequency estimate of the
state/feature transition probability. (Within an additive
constant, MDL, MML, combinatorial, incremental, and
Bayesian coding all lead to the same result). In the following
I will drop the prime in (ui,a,x′i) tuples and related situa-
tions if/since it does not lead to confusion. Let T ia

uixi ={t≤
n : ut−1 = ui,at−1 = a,xi

t = xi} be the set of times t−1
at which features that influence xi have values ui, and ac-
tion is a, and which leads to feature i having value xi. Let
nia

uixi = |T ia
uixi | their number (ni+

++ =n ∀i). I estimate each
feature probability separately by P̂a(xi|ui) = nia

uixi/nia
ui+

.
Using (1), this yields

P̂(x1:n|a1:n) =
n∏

t=1

T̂ at−1
xt−1xt

=
n∏

t=1

m∏
i=1

P̂at−1(xi
t|ui

t−1)

= ... = exp
[ ∑

i,ui,a

nia
ui+H

(
nia

ui•

nia
ui+

)]
The length of the Shannon-Fano code of x1:n is just the
logarithm of this expression. We also need to code each
non-zero count nia

uixi to accuracy O(1/
√

nia
ui+), which each

needs 1
2 log(nia

ui+
) bits. Together this gives a complete code

of length

CL(x1:n|a1:n) =
∑

i,ui,a

CL(nia
ui•) (3)

The rewards are more complicated.
Reward structure. Let Ra

xx′ be (a model of) the observed
reward when action a in state x results in state x′. It is natu-
ral to assume that the structure of the rewards Ra

xx′ is related
to the transition structure T a

xx′ . Indeed, this is not restrictive,
since one can always consider a DBN with the union of tran-
sition and reward dependencies. Usually it is assumed that
the “global” reward is a sum of “local” rewards Ria

uix′i , one
for each feature i [KP99]. For simplicity of exposition I as-
sume that the local reward Ri only depends on the feature
value x′i and not on ui and a. Even this is not restrictive

and actually may be advantageous as discussed in [Hut09]
for MDPs. So I assume

Ra
xx′ =

m∑
i=1

Ri
x′i =: R(x′)

For instance, in the example in the previous section, two
local rewards (RA

x′A = 11x′A<3 and RB
x′B = 11x′B<3) depend

on x′ only, but the third reward depends on the action (RR=
−11a6=N ).

Often it is assumed that the local rewards are directly ob-
served or known [KP99], but we neither want nor can do
this here: Having to specify many local rewards is an extra
burden for the environment (e.g. the teacher), which prefer-
ably should be avoided. In our case, it is not even possible to
pre-specify a local reward for each feature, since the features
Φi themselves are learned by the agent and are not statically
available. They are agent-internal and not part of the ΦDBN
interface. In case multiple rewards are available, they can
be modeled as part of the regular observations o, and r only
holds the overall reward. The agent must and can learn to
interpret and exploit the local rewards in o by himself.
Learning the reward function. In analogy to the MDP case
for R and the DBN case for T above it is tempting to esti-
mate Ri

xi by
∑

r′r
′nir′

+xi/ni+
+xi but this makes no sense. For

instance if rt =1 ∀t, then R̂i
xi ≡1, and R̂a

xx′ ≡m is a gross
mis-estimation of rt ≡ 1. The localization of the global re-
ward is somewhat more complicated. The goal is to choose
R1

x1 ,...,Rm
xm such that rt =R(xt)∀t.

Without loss we can set Ri
0 ≡ 0, since we can subtract

a constant from each local reward and absorb them into an
overall constant w0. This allows us to write

R(x) = w0x
0 + w1x

1 + ... + wmxm = w>x

where wi :=Ri
1 and x0 :≡1.

In practice, the ΦDBN model will not be perfect, and an
approximate solution, e.g. a least squares fit, is the best we
can achieve. The square loss can be written as

Loss(w) :=
n∑

t=1

(R(xt)−rt)2 = w>Aw−2b>w+c (4)

Aij :=
n∑

t=1

xi
tx

j
t , bi :=

n∑
t=1

rtx
i
t, c :=

n∑
t=1

r2
t

Note that Aij counts the number of times feature i and j are
“on” (=1) simultaneously, and bi sums all rewards for which
feature i is on. The loss is minimized for

ŵ := arg min
w

Loss(w) = A−1b, R̂(x) = ŵ>x

which involves an inversion of the (m+1)×(m+1) matrix
A. For singular A we take the pseudo-inverse.
Reward coding. The quadratic loss function suggests a
Gaussian model for the rewards:

P(r1:n|ŵ, σ) := exp(−Loss(ŵ)/2σ2)/(2πσ2)n/2

Maximizing this w.r.t. the variance σ2 yields the maximum
likelihood estimate

− log P(r1:n|ŵ, σ̂) = n
2 log(Loss(ŵ))− n

2 log ne
2π



where σ̂2=Loss(ŵ)/n. Given ŵ and σ̂ this can be regarded
as the (Shannon-Fano) code length of r1:n (there are actu-
ally a few subtleties here which I gloss over). Each weight
ŵk and σ̂ need also be coded to accuracy O(1/

√
n), which

needs (m+2) 1
2 logn bits total. Together this gives a com-

plete code of length

CL(r1:n|x1:na1:n) = (5)

= n
2 log(Loss(ŵ)) + m+2

2 log n− n
2 log ne

2π

ΦDBN evaluation and selection is similar to the MDP case.
Let G denote the graphical structure of the DBN, i.e. the set
of parents Pai⊆{1,...,m} of each feature i. (Remember ui

are the parent values). Similarly to the MDP case, the cost
of (Φ,G) on hn is defined as

Cost(Φ, G|hn) := CL(x1:n|a1:n) + CL(r1:n|x1:n, a1:n),
(6)

and the best (Φ,G) minimizes this cost.

(Φbest, Gbest) := arg min
Φ,G

{Cost(Φ, G|hn)}

A general discussion why this is a good criterion can be
found in [Hut09]. In the following section I mainly highlight
the difference to the MDP case, in particular the additional
dependence on and optimization over G.

DBN Structure Learning & Updating
This section briefly discusses minimization of (6) w.r.t. G
given Φ and even briefer minimization w.r.t. Φ. For the mo-
ment regard Φ as given and fixed.
Cost and DBN structure. For general structured local re-
wards Ria

uix′i , (3) and (5) both depend on G, and (6) repre-
sents a novel DBN structure learning criterion that includes
the rewards.

For our simple reward model Ri
xi , (5) is independent of

G, hence only (3) needs to be considered. This is a standard
MDL criterion, but I have not seen it used in DBNs before.
Further, the features i are independent in the sense that we
can search for the optimal parent sets Pai ⊆ {1,...,m} for
each feature i separately.
Complexity of structure search. Even in this case, finding
the optimal DBN structure is generally hard. In principle
we could rely on off-the-shelf heuristic search methods for
finding good G, but it is probably better to use or develop
some special purpose optimizer. One may even restrict the
space of considered graphs G to those for which (6) can be
minimized w.r.t. G efficiently, as long as this restriction can
be compensated by “smarter” Φ.

A brute force exhaustive search algorithm for Pai is to
consider all 2m subsets of {1,...,m} and select the one
that minimizes

∑
ui,aCL(nia

ui•). A reasonable and often
employed assumption is to limit the number of parents to
some small value p, which reduces the search space size to
O(mp).

Indeed, since the Cost is exponential in the maximal num-
ber of parents of a feature, but only linear in n, a Cost mini-
mizing Φ can usually not have more than a logarithmic num-
ber of parents, which leads to a search space that is pseudo-
polynomial in m.

Heuristic structure search. We could also replace the well-
founded criterion (3) by some heuristic. One such heuristic
has been developed in [SDL07]. The mutual information is
another popular criterion for determining the dependency of
two random variables, so we could add j as a parent of fea-
ture i if the mutual information of xj and x′i is above a cer-
tain threshold. Overall this takes time O(m2) to determine
G. An MDL inspired threshold for binary random variables
is 1

2n logn. Since the mutual information treats parents in-
dependently, T̂ has to be estimated accordingly, essentially
as in naive Bayes classification [Lew98] with feature se-
lection, where x′i represents the class label and ui are the
features selected x. The improved Tree-Augmented naive
Bayes (TAN) classifier [FGG97] could be used to model
synchronous feature dependencies (i.e. within a time slice).
The Chow-Liu [CL68] minimum spanning tree algorithm al-
lows determining G in time O(m3). A tree becomes a forest
if we employ a lower threshold for the mutual information.

Φ search is even harder than structure search, and remains
an art. Nevertheless the reduction of the complex (ill-
defined) reinforcement learning problem to an internal fea-
ture search problem with well-defined objective is a clear
conceptual advance.

In principle (but not in practice) we could consider
the set of all (computable) functions {Φ : H → {0,1}}.
We then compute Cost(Φ|h) for every finite subset Φ =
{Φi1 ,...,Φim} and take the minimum (note that the order is
irrelevant).

Most practical search algorithms require the specification
of some neighborhood function, here for Φ. For instance,
stochastic search algorithms suggest and accept a neighbor
of Φ with a probability that depends on the Cost reduction.
See [Hut09] for more details. Here I will only present some
very simplistic ideas for features and neighborhoods.

Assume binary observations O= {0,1} and consider the
last m observations as features, i.e. Φi(hn) = on−i+1 and
Φ(hn) = (Φ1(hn),...,Φm(hn)) = on−m+1:n. So the states
are the same as for ΦmMDP in [Hut09], but now S={0,1}m

is structured as m binary features. In the example here, m=
5 lead to a perfect ΦDBN. We can add a new feature on−m

(m;m+1) or remove the last feature (m;m−1), which
defines a natural neighborhood structure.

Note that the context trees of [McC96; Hut09] are more
flexible. To achieve this flexibility here we either have to
use smarter features within our framework (simply interpret
s=ΦS(h) as a feature vector of length m=dlog|S|e) or use
smarter (non-tabular) estimates of Pa(xi|ui) extending our
framework (to tree dependencies).

For general purpose intelligent agents we clearly
need more powerful features. Logical expressions or
(non)accepting Turing machines or recursive sets can map
histories or parts thereof into true/false or accept/reject or
in/out, respectively, hence naturally represent binary fea-
tures. Randomly generating such expressions or programs
with an appropriate bias towards simple ones is a universal
feature generator that eventually finds the optimal feature
map. The idea is known as Universal Search [Gag07].



Value & Policy Learning in ΦDBN
Given an estimate Φ̂ of Φbest, the next step is to determine
a good action for our agent. I mainly concentrate on the dif-
ficulties one faces in adapting MDP algorithms and discuss
state of the art DBN algorithms. Value and policy learning
in known finite state MDPs is easy provided one is satis-
fied with a polynomial time algorithm. Since a DBN is just
a special (structured) MDP, its (Q) Value function respects
the same Bellman equations [Hut09, Eq.(6)], and the opti-
mal policy is still given by an+1 := argmaxaQ∗a

xn+1
. Nev-

ertheless, their solution is now a nightmare, since the state
space is exponential in the number of features. We need al-
gorithms that are polynomial in the number of features, i.e.
logarithmic in the number of states.
Value function approximation. The first problem is that
the optimal value and policy do not respect the structure of
the DBN. They are usually complex functions of the (expo-
nentially many) states, which cannot even be stored, not to
mention computed [KP99]. It has been suggested that the
value can often be approximated well as a sum of local val-
ues similarly to the rewards. Such a value function can at
least be stored.
Model-based learning. The default quality measure for
the approximate value is the ρ-weighted squared difference,
where ρ is the stationary distribution.

Even for a fixed policy, value iteration does not converge
to the best approximation, but usually converges to a fixed
point close to it [BT96]. Value iteration requires ρ explicitly.
Since ρ is also too large to store, one has to approximate ρ
as well. Another problem, as pointed out in [KP00], is that
policy iteration may not converge, since different policies
have different (misleading) stationary distributions. Koller
and Parr [KP00] devised algorithms for general factored ρ,
and Guestrin et al. [GKPV03] for max-norm, alleviating this
problem. Finally, general policies cannot be stored exactly,
and another restriction or approximation is necessary.
Model-free learning. Given the difficulties above, I suggest
to (re)consider a very simple class of algorithms, without
suggesting that it is better. The above model-based algo-
rithms exploit T̂ and R̂ directly. An alternative is to sam-
ple from T̂ and use model-free “Temporal Difference (TD)”
learning algorithms based only on this internal virtual sam-
ple [SB98]. We could use TD(λ) or Q-value variants with
linear value function approximation.

Beside their simplicity, another advantage is that neither
the stationary distribution nor the policy needs to be stored
or approximated. Once approximation Q̂∗ has been ob-
tained, it is trivial to determine the optimal (w.r.t. Q̂∗) action
via an+1 =argmaxaQ∗a

xn+1
for any state of interest (namely

xn+1) exactly.
Exploration. Optimal actions based on approximate rather
than exact values can lead to very poor behavior due to lack
of exploration. There are polynomially optimal algorithms
(Rmax,E3,OIM) for the exploration-exploitation dilemma.

For model-based learning, extending E3 to DBNs is
straightforward, but E3 needs an oracle for planning in a
given DBN [KK99]. Recently, Strehl et al. [SDL07] accom-
plished the same for Rmax. They even learn the DBN struc-

ture, albeit in a very simplistic way. Algorithm OIM [SL08],
which I described in [Hut09] for MDPs, can also likely be
generalized to DBNs, and I can imagine a model-free ver-
sion.

Incremental Updates
As discussed two sections ago, most search algorithms are
local in the sense that they produce a chain of “slightly”
modified candidate solutions, here Φ’s. This suggests a po-
tential speedup by computing quantities of interest incre-
mentally.
Cost. Computing CL(x|a) in (3) takes at most time
O(m2k|A|), where k is the maximal number of parents
of a feature. If we remove feature i, we can simply re-
move/subtract the contributions from i in the sum. If we add
a new feature m+1, we only need to search for the best par-
ent setum+1 for this new feature, and add the corresponding
code length. In practice, many transitions don’t occur, i.e.
nia

uixi =0, so CL(x|a) can actually be computed much faster
in time O(|{nia

uixi >0}|), and incrementally even faster.
Rewards. When adding a new feature, the current local re-
ward estimates may not change much. If we reassign a frac-
tion α≤ 1 of reward to the new feature xm+1, we get the
following ansatz1.

R̂(x1, ..., xm+1) = (1−α)R̂(x)+wm+1x
m+1 =: v>ψ(x)

v := (1−α, wm+1)>, ψ := (R̂(x), xm+1)>

Minimizing
∑n

t=1(R̂(x1
t ...x

m+1
t )−rt)2 w.r.t. v analogous

to (4) just requires a trivial 2×2 matrix inversion. The
minimum ṽ results in an initial new estimate w̃ = ((1−
α̃)ŵ0,...,(1− α̃)ŵm,w̃m+1)>, which can be improved by
some first order gradient decent algorithm in time O(m),
compared to the exact O(m3) algorithm. When removing a
feature, we simply redistribute its local reward to the other
features, e.g. uniformly, followed by improvement steps that
cost O(m) time.
Value. All iteration algorithms described in the previous
section for computing (Q) Values need an initial value for V
or Q. We can take the estimate V̂ from a previous Φ as an
initial value for the new Φ. Similarly as for the rewards, we
can redistribute a fraction of the values by solving relatively
small systems of equations. The result is then used as an
initial value for the iteration algorithms in the previous sec-
tion. A further speedup can be obtained by using prioritized
iteration algorithms that concentrate their time on badly es-
timated parameters, which are in our case the new values
[SB98].

Similarly, results from time t can be (re)used as initial es-
timates for the next cycle t+1, followed by a fast improve-
ment step.

Outlook
ΦDBN leaves much more questions open and room for mod-
ifications and improvements than ΦMDP. Here are a few.

1An Ansatz is an initial mathematical or physical model
with some free parameters to be determined subsequently.
[http://en.wikipedia.org/wiki/Ansatz]



• The cost function can be improved by integrating out the
states analogous to the ΦMDP case [Hut09]: The likeli-
hood P(r1:n|a1:n,Û) is unchanged, except that Û ≡ T̂ R̂
is now estimated locally, and the complexity penalty be-
comes 1

2 (M +m+2)logn, where M is (essentially) the
number of non-zero counts nia

uixi , but an efficient algo-
rithm has yet to be found.

• It may be necessary to impose and exploit structure on
the conditional probability tables P a(xi|ui) themselves
[BDH99].

• Real-valued observations and beliefs suggest to extend
the binary feature model to [0,1] interval valued features
rather than coding them binary. Since any continuous se-
mantics that preserves the role of 0 and 1 is acceptable,
there should be an efficient way to generalize Cost and
Value estimation procedures.

• I assumed that the reward/value is linear in local re-
wards/values. Is this sufficient for all practical purposes?
I also assumed a least squares and Gaussian model for
the local rewards. There are efficient algorithms for much
more flexible models. The least we could do is to code
w.r.t. the proper covariance A.

• I also barely discussed synchronous (within time-slice)
dependencies.

• I guess ΦDBN will often be able to work around too re-
strictive DBN models, by finding features Φ that are more
compatible with the DBN and reward structure.

• Extra edges in the DBN can improve the linear value func-
tion approximation. To give ΦDBN incentives to do so,
the Value would have to be included in the Cost criterion.

• Implicitly I assumed that the action space A is small.
It is possible to extend ΦDBN to large structured action
spaces.

• Apart from the Φ-search, all parts of ΦDBN seem to be
poly-time approximable, which is satisfactory in theory.
In practice, this needs to be improved to essentially linear
time in n and m.

• Developing smart Φ generation and smart stochastic
search algorithms for Φ are the major open challenges.

• A more Bayesian Cost criterion would be desirable: a
likelihood of h given Φ and a prior over Φ leading to a
posterior of Φ given h, or so. Monte Carlo (search) algo-
rithms like Metropolis-Hastings could sample from such
a posterior. Currently probabilities (=̂2−CL) are assigned
only to rewards and states, but not to observations and
feature maps.

Summary. In this work I introduced a powerful framework
(ΦDBN) for general-purpose intelligent learning agents, and
presented algorithms for all required building blocks. The
introduced cost criterion reduced the informal reinforcement
learning problem to an internal well-defined search for “rel-
evant” features.
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