
The robotics path to AGI using Servo Stacks

J. Storrs Hall
Institute for Molecular Manufacturing

Laporte, PA, USA

Abstract

The case is made that the path to AGI through cogni-
tive and developmental robotics is compelling. Beyond
the familiar argument that it keeps researchers honest
by forcing their systems to cope with the real world, it
encourages them to recapitulate the evolutionary de-
velopmental path which gave rise to intelligence in hu-
mans. Insights from this perspective are embodied in
the Servo Stacks cognitive architecture with several
salient features. The brain evolved as a body controller
and thus is based largely on computational structures
appropriate to physical process control. Evolution typ-
ically copies existing structure and modi�es it mini-
mally to meet a new demand. We should therefore
expect the higher cognitive functions to be performed
by body controllers pressed into service as brain con-
trollers.

Introduction and Motivation

The brain evolved as a body controller; except for
size, the human brain is structurally similar to that
of other primates. Neocortex in surprisingly homoge-
neous, suggesting a general computing fabric instead
of hard-wired functional modules. This uniformity has
been cited as a strong argument for a common com-
putational function (Mountcastle 1978). An argument
can thus be made that evolution took a computing sub-
strate evolved for body control and simply extended it
to support the complex cognitive functions of symbolic
ratiocination characteristic of human intelligence.
The Servo Stacks architecture is an attempt to use

this insight as a guide in developing a general arti�cial
intelligence. For example, there is some evidence that
the neural structures which manipulate grammar and
language developed from, or indeed overlap, the ones
which produce �nely nuanced and sequenced manipu-
lations by the hands. Thus we feel that insight into the
former may be gained by investigating the latter, par-
ticularly to the extent of identifying mechanisms that
might be responsible for compliant dexterity and seam-
less �uidity in both domains.
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It is common in higher-level cognitive architectures
for there to be a chain something like �sensory input
to interpretation to cogitation to action sequencing to
motor output.� In evolution, however, the structure
of a simpler animal is usually augmented by adding a
controller to the top the entire lower-form structure,
giving rise to a laminar structure with crosstalk between
input and output at each level. This form is clearly
re�ected in the control architectures of modern robotics
as pioneered in (Brooks 1986).
To extend this laminar control architecture to be a

more general-purpose cognitive system, we reinterpret
the a�erent and e�erent signals at each level, together
with their crosstalk in both directions, as a feedback-
loop servo controller. The resulting stack of servos then
represents a classic abstraction hierarchy, with each suc-
cessive servo �thinking� about what is happening in
terms of a more general �language� as we ascend the
stack.
For example, we might have lower-level servos con-

cerned with pressure patterns on the skin and muscle
activation strengths; a higher level with joint angles and
speeds; higher yet with step-taking and foot placement;
then room-to-room navigation; then the task of serving
co�ee; then the entertainment of guests, and so forth.
Given this general form for a cognitive architecture,

the key open questions are

• Can a single general model of servo be developed that
is appropriate to a broad range of these levels? If
so, the notion that the brain grows by copying and
modifying existing servos, both evolutionarily and in
individual mental development, would gain increased
cogency.

• The servos in a working model of mind will not form
a simple linear stack but a complex network, which
must support varying patterns of communication for
di�erent overall cognitive tasks and states. How is
this done?

• For mental growth and learning, new servos, with
new internal �languages�, must be formed to imple-
ment the ability to think in new abstractions about
new concepts. How are they created, programmed,
and connected?



After examining these we will return to the question of
a speci�c architecture.

A Symbolic Servo

Upon seeing the algorithm of Newell and Simon's Gen-
eral Problem Solver, John McCarthy quipped, �It's a
symbolic servo.�1

A standard process-control servo receives a control
input signal s (the �setpoint�) and a feedback signal f
from the process (called the �plant�) to be controlled.
These two signals must be commensurate, e.g. both a
measure of engine speed. The servo then adjusts some
controllable parameter p of the plant based on a func-
tion of the control and feedback signals.
If the servo has a memory of enough cases, arranged

as triples (f0, f1, p) (e.g. the value of the feedback signal
before and after setting the output to p), �case-based�
control can obtained by using p from the tuple where
f0 is closest to current feedback f , and f1 is nearest the
current control input s. For well-behaved plants, even
a sparsely populated memory can be interpolated with
standard numerical regression techniques.
The Servo Stacks model speci�es a controller

whose memory is (s, p, d, f), where s is the setpoint,
f = f0 is the original value of the feedback signal,
d = f1 − f0 the di�erential of the trajectory, and p
is the process control signal sent to the plant. The use
of a di�erential as a trajectory link (instead of explic-
itly storing the successive value) is prompted by the
observed di�culty of following well-practiced behaviors
backwards, and because matching di�erentials a�ords
a cheap generalization over translation, and with a nod
to the �di�erence operators� in GPS (Newell and Simon
1963). It also brings us within shouting distance of the
standard transfer function formulation of linear dynam-
ical systems in control theory, although we have yet to
take practical advantage of this.
We refer to this as a �sigma� (situation / goal /

memory / action) to distinguish it from standard for-
mulations of servo or state machine. In our model, each
signal has a strength as well as a value; at zero strength,
it acts as a �don't-care�, and at partial strength it acts
as a bias in case the other inputs incompletely deter-
mine a memory record, but can be overriden by stronger
signals on other inputs. More precisely, each signal is a
vector whose components individually have strengths.
If su�ciently populated, the stored trajectories form

a manifold in the memory space, which is equivalent to
an equation (or system of them) which forms a model
of the observed behaviors. Typically the manifold will
be a p-valued function of (f, s)-space, and generally in-
terpreted as a function selected by s in f -space.
If some of the dimensions of the space are time deriva-

tives of others, it forms a dynamical systems model
(equivalent to a system of di�erential equations). In
the absence of such derivatives, the sigma can either be

1As related by Marvin Minsky at AAAI FSS 2001, North
Falmouth, MA

clocked to obtain state-machine behavior or allowed to
run free, in which case it will �nd �xed points of its
function.
A sigma can be used in a variety of modes, depending

on its inputs:

1. Homeostatic servo mode: as above, s is driven by a
control signal from above, f is driven by the feedback
signal from below, d is sent back up as a feedback. p
is output to drive the plant, and may optionally be
added into d as part of the feedback.

2. Sequencing control mode: s is driven by control from
above, d + f is output to drive f , and p + d is sent
back up as feedback.

3. Simulate mode: s is driven by control from above,
d + f is output to drive f , and p + d is sent back up
as feedback.

4. Recognize mode: f and d are driven by the signal
from below and its derivative; s and p+ d are output
to be sent back up as feedback. s may also be fed back
weakly to itself, and/or driven weakly from above for
a priming e�ect.

Signals and Representation

Analogy (Hofstadter 1995) and blending (Fauconnier
and Turner 2003) have both been suggested as key ba-
sic operations that a cognitive architecture must imple-
ment. It is instructive to note that vectors of real num-
bers support both these operations as simple geometric
combinations, while representing concepts as complex
as a recognizable sketch of a human face (Churchland
1986; 2005). Although at higher levels of abstraction
it is surely the case that more complex structures and
operations will be necessary to support analogy and
blending, it seems reasonable to begin with a primitive
representation that provides a head start.
The physical signals in Servo Stacks are �xed-length

numeric vectors of length n (n = 1024 in current ex-
periments), but support an arbitrary number of no-
tional signals. The components of the notional signals
are given a superimposed coding as sums of randomly-
chosen base vectors in the physical signal space. Any
two such vectors have a high probability of being nearly
orthogonal (Kanerva 1988). Any port on any sigma can
be connected to any other port, with a high probabil-
ity that notional signals unknown to the receiver will
simply be ignored (by virtue of being orthogonal to the
active manifold). Notional signals can be generated lo-
cally without the need of an overall registry, and can
be combined simply by adding physical signals. Here-
inafter, we shall ignore the encoding and refer only to
the notional signal vectors of arbitrary length.
Such vectors can obviously record the position in con-

�guration space of an arm, or be interpreted as a raster
(including the areal functions of dynamic neural �eld
theory (Erlhagen and Bicho 2006)), or specify force val-
ues for muscles. However, throughout most of the ar-
chitecture, they will typically record the activation of,



and signals to be sent to, sets of other sigmas. In the
sense that such a vector can be thought of as repre-
senting a situation as recognized or understood by the
other sigmas, it functions as a frame (Minsky 1975). In
cases where that is an appropriate interpretation, the
sigma itself acts as a frame-system, predicting new sit-
uations as the result of actions or suggesting actions
given desired situations.
It is perhaps important to emphasize that there is not

one big vector space in which everything is represented,
as in some connectionist theories. Each sigma has its
own language, in the sense of an interpretation of the
vectors. More precisely, each pair of sigmas which com-
municate have a common interpretation for the signals
that pass between them, but these interpretations vary
completely from one area to another.

Stacks and Networks

Servos are commonly arranged in stacks in complex
mechanisms. Upper-level servos may send control sig-
nals directly to lower ones (the attitude-control sys-
tem in a �y-by-wire aircraft commanding aileron ser-
vos) or indirectly through a process parameter (room
thermostats in a home hydronic heating system run hot-
water pumps, relying on a homeostasis provided by a
boiler thermostat). Leading roboticists Albus (Albus
1992) and Brooks (Brooks 1986) have based their �ag-
ship architectures on hierarchies of FSAs.
Thus the Servo Stacks model, as a layered net-

work of elements that can act as sequencing or home-
ostatic controllers, is straightforwardly adapted into
these roles. A key di�erence between this and a con-
ventional view of a control hierarchy, however, is that
sigmas by their nature provide a sensing and transla-
tion function. The setpoint and feedback signals s and
f are necessarily in a di�erent �language� than p, and
thus, in a directly connected stack, from the s and f of
the sigma below.
A servo stack is as reasonable a model for a sensory

pathway as for a motor one. It is becoming increasingly
recognized that sensing is neurophysiologically an ac-
tive, not a passive process (Wolpert, Ghahramani, and
Jordan 1995). In vision, for example, there are exam-
ples of homeostasis, such as iris dilation for retina illu-
mination levels, and sequencing control, as of saccading
in intermediate object recognition to trace boundaries
and salient features.
Holonic recognition, including key features such as

priming and context sensitivity, is readily provided for
in Servo Stacks by weakly driving the s input from
above. A key feature of the superimposed coding of sig-
nals is that the signal representing a percept can have
components corresponding to several possibilities, and
the interpretation process may provide (e�erent!) feed-
back from semantic constraints.
At the lower sensorimotor levels, the recon�gurability

of the sigmas is not important, and indeed there may be
a level below which they are hard-wired and cognitively

impenetrable. However, at higher levels where sigmas
represent concepts such as words and goal-directed ac-
tions, recon�gurability is crucial to the use of the net-
work as a fabric of representation. The same set of sig-
mas can be used to recognize an action, imagine doing
it, predict its e�ects, and actually to perform it.

Recursion and Concepts

We posit a mechanism similar to Minsky's k-line (Min-
sky 1980), which can record all the network elements
active at a given point, but also able to record their
connections: which port on each is driving which other
ports at what strength. These active subnet con�gura-
tions (hereinafter ASCs) can be named and passed as
values between higher-level sigmas, which can perform
operations on them such as substitution: the ASCs for
�pick up the red block�, �red block�, and �blue ball� can
be combined in such a way as to form an ASC for �pick
up the blue ball�.
The formation of ASCs is at least neurally plausi-

ble. A generally broadcast signal could cause all ac-
tive elements to associate a code (one component of the
notional vector) with their current activity or connec-
tivity, and a similar broadcast could cause that activ-
ity and connectivity to be reestablished. A number of
associative datastructure manipulation techniques are
similarly plausible for operations between ASCs (Fos-
ter 1976; Potter 1991; Hall 1994).
Since ASCs are capable of recursion (in the lin-

guistics sense, i.e. capable of being combined to
form complex structures from simple ones) and other
typically symbolic manipulations, they form a �lan-
guage of thought� in the sense of Fodor (Fodor 1975;
1978).
Perhaps the most important question one can ask of a

cognitive architecture is how it represents concepts. In
the common quip, something is a duck if it walks like a
duck and quacks like a duck. Rather than representing a
duck as some static datastructure essentially equivalent
to a dictionary entry, an ASC represents a duck with an
active working machine that is capable of recognizing
a duck, simulating a duck, and even imitating a duck.
This is the active subnet which activates and connects
all the sigmas which store duck-relevant trajectories.
Note again that ASCs are manipulated, not by some

exogenous program, but by sigmas whose memories p
are records of ASC-manipulation control signals. The s
and f signals to such sigmas are typically the output of
more complex processing and recognition. The higher-
level sigmas which manipulate ASCs are no di�erent
in principle from any others � manipulating one's own
thoughts must be learned and practiced.

Play, Practice, and Imitation

Evidence ranging from visually deprived kittens (Wiesel
and Hubel 1963) to language-deprived children (Sacks
1989) indicates that appropriate sensory experience is
necessary for the development of cognitive ability across



a wide range of levels of organization. The same phe-
nomenon would a�ect our sigma, which would be in-
competent at its task in the absence of a populated
memory.
For a sigma to become competent at recognition or

control, its memory must be populated with enough
trajectories to form a reasonable model of the dynam-
ics of the space implied by its signals. Underpopulated
sigmas can improve their models by indulging in play:
driving outputs so that the resulting state falls into va-
cant regions of the space. The plant to be driven in
such play can be either the actual robot body, through
the entire sensorimotor stack below the playing sigma,
or simulations, in which case the stack is disconnected
by putting some cutset of intermediate sigmas into sim-
ulate mode.
By far the major mode of human learning is imita-

tion. After a sigma records the experience of someone
else doing an action, the action may be imitated sub-
stituting oneself for the original actor in the ASC. This
will rarely be perfect, but it gives the student mind a
sca�olding upon which to improve by practice.

An Architecture

The testbed for Servo Stacks is an upper-torso an-
thropoid robot in the genre of Cog (Brooks et al. 1999).
The robot is intended to be able to learn enough skills
and concepts to be roughly the equivalent of a SHRDLU
(Winograd 1972), but with physical cameras, manipu-
lators, wooden blocks and table, and hearing and re-
sponding in spoken language.
Given the demanding computational and memory re-

quirements of the Servo Stacks model, particularly
the associative memory of the sigmas, it seems likely
that processing power will form a substantial bottle-
neck for the near future. We consider this appropriate,
however: any biologically inspired theory of the mind
must take into account the substantial apparent pro-
cessing power of the brain (Merkle 1987). Any such
theory whose computational requirements �t available
computer hardware too neatly seems suspiciously ad
hoc.

Autogenous Kernel

We are primarily concerned with the ability of a mind
to learn and grow. We adopt the basic architecture
of a self-extending system from (Hall 1999), which
speci�es an �autogenous kernel� with irreducibly ba-
sic self-construction capabilities, which builds, in suc-
cessive layers, a series of extensions that have both
more general capabilities and more sophisticated self-
construction abilities.
In a cognitive architecture, the kernel consists of

some basic sensorimotor sigmas, pre-programmed with
records that allow for infant-like activities like waving
arms and learning to track them with eyes. Perhaps
more importantly, it contains higher-level sigmas pre-
programmed with records that allow them to do basic
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Figure 1: Kernel robot cognitive architecture.

ASC manipulation.

The key issue in learning is the provenance of the
mappings of signals and connectivity of the sigmas. For
example, consider the sigma that maps from 3-D space
to the con�guration space of a multi-jointed arm, con-
stituting the forward or inverse kinematics function de-
pending on how it is used. This works after it is pop-
ulated � where did the 3-D space come from originally,
however?

The process starts with a handful of data-mining
heuristics that are applied more or less at random to all
the signals in the system. In early experiments these are
Kohonen map formation, other standard dimensional-
ity reduction techniques such as PCA, and hierarchical
clustering using a�nity propagation (Frey and Dueck
2007).

Sigmas generated this way are run in prediction mode
and compete in an agoric/genetic ecosystem (Hall,
Steinberg, and Davison 1998) on the basis of how well
their predictions match experience. Those that suc-
ceed are linked together by the supply-chain dynamics
of the agoric phase of the ecosystem and continue to
compete in the marketplace. (The top-level in�ow of
funds in this system corresponds to motivations, and
is currently a very simplistic stub that provides for an-
swering questions and performing requested actions.)



Sensorimotor stack con�uence

A key feature of the Servo Stacks model is that the
stacks implementing any given sensorimotor modality
(such as vision) are not separate but merge into other
stacks at relatively low levels. In the testbed robot
architecture, the main stacks are vision, hearing, and
manipulation.

• Vision and manipulation converge at a low level to al-
low a fairly tight hand-eye coordination control loop.
The upper end of this con�uence feeds into an object-
model stack.

• At a somewhat higher level, vision and hearing con-
verge at the level of letters/words, feeding into a lan-
guage stack.

• The language stack and object model converge at a
level such that model semantics are active in sentence
parsing, as in SHRDLU.

When the robot hears the sentence, �Dutch the blue
blog,� the sigmas which store word and syntax-related
trajectories � words are trajectories through phonemes,
sentences are trajectories through words � are con�g-
ured to perform a spreading-activation parse similar to
a Jones APN (Jones 1983; Jones and Driscoll 1985).
There is enough feedback in this process to force the
recognition of �Touch the blue block.� The recognition
itself will involve setting up the performance sigmas in
simulation mode (at a high level only) to verify that
the meaning is within the robot's experience. This will
amplify the salience of �touch� and diminish that of
�dutch�, etc.

Memory

There is no separate module labelled �memory� in the
architecture. Long-term memories are represented by
the trajectory memories in all the sigmas and the map-
pings from signals to ASCs. Short-term or working
memory is represented by the content of the active sig-
nals (including which ASCs are active).
Memories within a given sigma are managed, in our

early experiments, by clustering and weighting heuris-
tics (and by having each sigma have a �xed, limited
capacity). Segmentation of trajectories into distinct
traces is frankly ad hoc and is an area of active in-
vestigation.

Related Work

Servo Stacks falls squarely in the �eld of cognitive
robotics (Clark and Grush 1999; Sloman et al. 2006).
It shares in particular a strong concern for ontogenetic
development with such projects as iCub (Tsagarakis et
al. 2007). It is distinguished from many of the spe-
ci�c e�orts in developmental robotics (Lungarella et al.
2003), however, by focussing on function, representa-
tion, and organization at a higher level than a neural
network model (Shanahan 2006) or even a dynamic neu-
ral �elds model (Erlhagen and Bicho 2006).

Minsky and Papert's original �Society of the Minds�
cognitive architecture (Minsky 1977) was considerably
more neurally inspired (and more oriented toward men-
tal growth) than the majority of the �agent-based� ar-
chitectures which followed � although the latter typi-
cally had the advantage of being more well-speci�ed and
indeed actually being implemented. The present work
is strongly inspired by SoM but di�ers from it in several
signi�cant ways, particularly in the notion that ASCs
can be handed from agent to agent as values. (Note
that the �rst published mention of a rule-based con-
troller recon�gurable as a simulator is in Marvin Min-
sky's Princeton dissertation (Minsky 1954)!)
Our model follows Grush's theory (Grush 2004) of

representation as emulation based on forward modelling
in Kalman �lters and presumed equivalent functionality
in the brain in several ways.
The notion of simply using the full record of ex-

perience as a model is generally referred to in AI as
�case-based reasoning� (Kolodner 1992). Some of the
neural-network approaches that allow one-shot learn-
ing are the original Hop�eld network (with its Hebbian
programming algorithm) (Hop�eld 1982) and Alek-
sander's G-RAM neural unit model (Aleksander 1990).
Servo Stacks might be implemented in either of
these; for example, similar in spirit to our use of sig-
mas as associative-memory based sequencers is Orpo-
nen's programming language for Hop�eld nets (Orpo-
nen and Prost 1996). However, for any digital simu-
lation, an exhaustive search of a vector list is as fast
as one single iteration of a Hop�eld relaxation, so we
choose instead to concentrate on the abstract proper-
ties of proximity in n-spaces and assume that conven-
tional techniques can be developed to implement them
e�ciently (Shakhnarovich, Darrell, and Indyk 2006;
Garcia, Debreuve, and Barlaud 2008).
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