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Abstract 
This paper shows that a constraint on universal Turing 
machines is necessary for Legg's and Hutter's formal 
measure of intelligence to be unbiased. It also explores 
the relation of the No Free Lunch Theorem to formal 
measures of intelligence. 

Introduction 
A formal definition of intelligence can provide a well-
defined goal to those developing artificial intelligence. 
Legg's and Hutter's formal measure of the intelligence of 
agents interacting with environments provides such a 
definition (Legg and Hutter 2006). Their model includes 
weighting distributions over time and environments. The 
point of this paper is to argue that a constraint on the 
weighting over environments is required for the utility of 
the intelligence measure. 

A Formal Measure of Intelligence 
In Legg's and Hutter's measure, based on reinforcement 
learning, an agent interacts with its environment at a 
sequence of discrete times, sending action ai to the 
environment and receiving observation oi and reward ri 
from the environment at time i. These are members of 
finite sets A, O and R respectively, where R is a set of 
rational numbers between 0 and 1. The environment is 
defined   by   a   probability   measure   μ( okrk | o1r1a1 … 
ok-1r k-1a k-1 ) and the agent is defined by a probability 
measure  π(ak | o1r1a1 … ok-1r k-1a k-1 ). 

The value of agent π in environment μ is defined by 
the expected value of rewards: 

 
Vμ

π = E(∑i=1
∞ wiri) 

 
where the wi ≥ 0 are a sequence of weights for future 
rewards subject to ∑i=1

∞ wi = 1 (Legg and Hutter 
combined the wi into the ri). In reinforcement learning 
the wi are often taken to be (1-γ)γi-1 for some 0 < γ < 1. 
Note 0 ≤ Vμ

π ≤ 1. 
The intelligence of agent π is defined by a weighted 

sum of its values over a set E of computable 
environments. Environments are computed by programs, 
finite binary strings, on some prefix universal Turing 
machine (PUTM) U. The weight for μ ∈ E is defined in 
terms of its Kolmogorov complexity: 

 
K(μ) = min { |p| : U(p) computes μ } 
 

where |p| denotes the length of program p. The 
intelligence of agent π is: 

 
Vπ = ∑μ∈E 2-K(μ) Vμ

π. 
 
The value of this expression for Vπ is between 0 and 

1 because of Kraft's Inequality for PUTMs (Li and 
Vitányi 1997): ∑μ∈E 2-K(μ) ≤ 1. 

Legg and Hutter state that because K(μ) is 
independent of the choice of PUTM up to an additive 
constant that is independent of μ, we can simply pick a 
PUTM. They do caution that the choice of PUTM can 
affect the relative intelligence of agents and discuss the 
possibility of limiting PUTM complexity. But in fact a 
constraint on PUTMs is necessary to avoid intelligence 
measures biased toward specific environments: 

Proposition 1. Given μ ∈ E and ε > 0 there exists a 
PUTM Uμ  such  that  for  all  agents  π: 

 
Vμ

π / 2 ≤ Vπ < Vμ
π / 2 + ε 

 
where Vπ is computed using Uμ. 

Proof. Fix a PUTM U0 that computes environments. 
Given μ ∈ E and ε > 0, fix an integer n such that 2-n < ε. 
Then construct a PUTM Uμ that computes μ given the 
program "1", fails to halt (alternatively, computes μ) 
given a program starting with between 1 and n 0's 
followed by a 1, and computes U0(p) given a program of 
n+1 0's followed by p. Now define K using Uμ. Clearly: 

 
2-K(μ) = 1/2 
 

And, applying Kraft's Inequality to U0: 
 

∑μ' ≠ μ 2-K(μ') ≤ 2-n < ε. 
 

So Vπ = Vμ
π / 2 + X where X = ∑μ' ≠ μ 2-K(μ') Vμ'

π and 0 ≤ X 
< ε.  � 

Whatever PUTM is used to compute environments, 
all but an arbitrarily small ε of an agent's intelligence is 
determined by its value in a finite number of 
environments. Lucky choices of actions at early, heavily 
weighted time steps in simple, heavily weighted 
environments, may give a less intelligent agent an 
advantage greater than ε, that a more intelligent agent 
cannot make up by good choices of actions in very 
difficult, but lightly weighted environments. 

Note that as environment complexity increases, 
agents will require longer times to learn good actions. 
Thus, given a distribution of time weights that is constant 
over all environments, even the best agents will be 
unable to get any value as environment complexity 



increases to infinity. It would make sense for different 
environments to have different time weight distributions. 

Two points for consideration despite their being 
discouraged by reviewers of this paper: 

1. If PUTM programs were answers (as in 
Solomonoff Induction, where an agent seeks programs 
that match observed environment behavior) then 
weighting short programs more heavily would make 
sense, since shorter answers are better (according to 
Occam's razor). But here they are being used as 
questions and longer programs pose more difficult 
questions so arguably should be weighted more heavily. 

2. The physical universe contains no more than 1090 
bits (Lloyd 2002) so is a finite state machine (FSM). 
Hence an intelligence measure based on FSMs is more 
realistic than one based on Turing machines. 

No Free Lunch and a Finite Model 
The No-Free-Lunch Theorem (NFLT) tells us that all 
optimization algorithms have equal performance when 
averaged over all finite environments (Wolpert and 
Macready 1997). It is interesting to investigate what 
relation this result has to intelligence measures that 
average agent performance over environments. 

To define an intelligence measure based on finite 
environments take the sets A, O and R of actions, 
observations and rewards as finite and fixed. An 
environment is defined by a FSM: 

 
f:S×A→S×O×R 
 

where S is a finite set of states. The value of an agent in 
this environment is the expected value of a weighted sum 
over a finite sequence of future rewards, with weights 
summing to 1. The measured intelligence of an agent is a 
weighted sum of its values in environments whose state 
set sizes fall in a finite range, weights summing to 1. 

This finite model lacks an important hypothesis of 
the NFLT: that the optimization algorithm never makes 
the same action more than once. The same result can be 
achieved by a no repeating state condition (NRSC) on 
environment FSMs: that they can never repeat the same 
state. Although this may seem artificial, it applies in the 
physical universe because of the second law of 
thermodynamics. 

Assuming the NRSC and that all FSMs with the 
same number of states share the same environment 
weight and the same sequence of time weights, then all 
agents have the same measured intelligence, the average 
reward (∑r∈R r) / |R| (Hibbard 2008). 

Conclusion 
According to current physics the universe is a FSM 
satisfying the NRSC. If we measure agent intelligence 
using a distribution of FSMs satisfying the NRSC in 
which all FSMs with the same number of states have the 
same weight, then all agents have the same measured 
intelligence. In this environment distribution past 
behavior of environments provides no information about 
their future behavior. For a useful measure of 

intelligence, environments must be weighted to enable 
agents to predict the future from the past. This is the idea 
behind Kolmogorov complexity: to more heavily weight 
environments that can be generated by short programs 
since agents can more easily learn their behaviors. 

However, Proposition 1 shows that a PUTM must be 
chosen carefully in an intelligence measure based on 
Kolmogorov complexity. This suggests a distribution of 
environments based on program length but less abstract 
than Kolmogorov complexity. So define a PUTM based 
on an ordinary programming language. 

States and behaviors never repeat in the physical 
world, but human agents learn to predict future behavior 
in the world by recognizing current behavior as similar 
to previously observed behaviors and making predictions 
based on those previous behaviors. Similarity can be 
recognized in sequences  of  values  from  unstructured  
sets  such  as  {0, 1}, but there are more ways to 
recognize similarity in sequences of values from sets 
with metric and algebraic structures such as numerical 
sets. Our physical world is described largely by 
numerical variables, and the best human efforts to 
predict behaviors in the physical world use numerical 
programming languages. So the sets A and O of actions 
and observations should be defined using numerical 
values, just as rewards are taken from a numerical set R. 
Including primitives for numerical operations in 
environment programs has the effect of skewing the 
distribution of environments toward similarity with the 
physical world. 

An ordinary numerical programming language is a 
good candidate basis for a formal measure of 
intelligence. But the real point of this paper is that 
distributions over environments pose complex issues for 
formal intelligence measures. Ultimately our definition 
of intelligence depends on the intuition we develop from 
using our minds in the physical world, and the key to a 
useful formal measure is the way its weighting 
distribution over environments abstracts from our world. 
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