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Abstract 
Inspired by mental imagery, we present results of extending 
a symbolic cognitive architecture (Soar) with general 
computational mechanisms to support reasoning with 
symbolic, quantitative spatial, and visual depictive 
representations. Our primary goal is to achieve new 
capabilities by combining and manipulating these 
representations using specialized processing units specific to 
a modality but independent of task knowledge. This paper 
describes the architecture supporting behavior in an 
environment where perceptual-based thought is inherent to 
problem solving. Our results show that imagery provides the 
agent with additional functional capabilities improving its 
ability to solve rich spatial and visual problems. 

Introduction 
The generality and compositional power of sentential, 
symbolic processing has made it central to reasoning in 
general AI systems. However, these general symbolic 
systems have failed to address and account for inherently 
perceptual, modality-specific processing that some argue 
should participate directly in thinking rather than serve 
exclusively as a source of information (Barsalou 1999; 
Chandrasekaran 2006). Mental imagery is an example of 
such thought processing. 

In this paper, we argue that general, intelligent systems 
require mechanisms to compose and manipulate amodal, 
symbolic and modality-specific representations. We defend 
our argument by presenting a synthesis of cognition and 
mental imagery constrained by a cognitive architecture, 
Soar (Laird 2008).  Empirical results strengthen our claim 
by demonstrating how specialized, architectural components 
processing these representations can provide an agent with 
additional reasoning capability in spatial and visual tasks.  

Related Work 
One of the key findings in mental imagery experiments is 
that humans imagine objects using multiple representations 
and mechanisms associated with perception (Kosslyn, et al., 
2006). For spatial and visual imagery, we assume there are 
at least three distinct representations: (1) amodal symbolic, 
(2) quantitative spatial, and (3) visual depictive. General 
reasoning with each of these representations is a key 

distinction between this work and others. The history of 
using these representations in AI systems begins perhaps 
with Gelernter’s (1959) geometry theorem prover and 
Funt’s (1976) WHISPER system that reasoned with 
quantitative and depictive representations respectively. 
Some researchers, to include Glasgow and Papadias (1992) 
and Barkowsky (2002), incorporated mental imagery 
constraints in the design of their specific applications.   

The CaMeRa model of Tabachneck-Schijf’s et al. (1997) 
is perhaps the closest system related to this work. CaMeRa 
uses symbolic, quantitative, and depictive representations 
and includes visual short-term and long-term memories. 
Whereas their shape representation is limited to algebraic 
shapes (i.e. points and lines), we leave the type of object 
open-ended. CaMeRa’s spatial memory is limited to an 
object’s location while ignoring orientation, size, and 
hierarchical composition (e.g. a car is composed of a frame, 
four wheels, etc.). Our system uses these spatial properties, 
providing significantly more reasoning capability. 

Cognitive architectures have traditionally ignored 
modality specific representations. ACT-R’s (Anderson, 
2007) perceptual and motor systems focus on timing 
predictions and resource constraints rather than their reuse 
for reasoning. Some researchers have extended the 
perception and motor capabilities of cognitive architectures 
(e.g. see Best et al., 2002; Wray et al., 2005). Each 
contribution effectively pushes the system closer to the 
environment but requires ad-hoc, bolted-on components 
tailored for specific domains. These approaches assume that 
cognition abandons perceptual mechanisms after input 
rather than using these mechanisms for problem solving.  

Kurup and Chandrasekaran (2007) argue for general, 
multi-modal architectures and augment Soar with 
diagrammatic reasoning. They are non-committal as to 
whether diagrams are quantitative or depictive. Their 
current implementation uses strictly quantitative structures.  
Key differences include their proposal for a single, working 
memory containing both symbolic and diagrammatic 
representations. We propose separate symbolic and 
representation-specific short-term memories where 
perceptual representations are not directly accessible to the 
symbolic system. Whereas their diagrammatic system 
constrains the specific types of objects to a point, curve, or 



region, we leave the type of object open-ended to any shape 
the agent experiences in the world or imagines by 
composing known objects.   

Wintermute and Laird (2008) extend Soar with a spatial 
reasoning system that focuses on translating qualitative 
predicates into quantitative representations and simulating 
continuous motion—extending the framework described 
here as it relates to spatial imagery. Gunzelmann and Lyon 
(2007) propose extending ACT-R with specialized, spatial 
processing that includes quantitative information. They do 
not plan to incorporate depictive representations without 
compelling evidence for their use. We hope to provide some 
evidence and argue that all three representations are 
necessary to achieve general functionality.  

Experimental Environment 
In previous work, Lathrop and Laird (2007) demonstrated 
how extending Soar with quantitative spatial and visual 
depictive representations provided an agent with capabilities 
for recognizing implicit spatial and visual properties. 
However, the results were limited to solving internally 
represented problems. This paper extends those results to a 
dynamic environment where the agent must interpret and act 
on information from multiple internal and external sources.  

The U.S. Army’s work in developing robotic scouts for 
reconnaissance missions (Jaczkowski, 2002) motivates the 
evaluation environment. In support of this effort, we built a 
simulation modeling a section of two robotic scout vehicles 
that must cooperate to maintain visual observation with an 
approaching enemy (Figure1a). One scout, the section lead, 
is a Soar agent, modeled with and without mental imagery 
for evaluation purposes. The other, teammate, scout is 
scripted. The section’s primary goal is to keep their 
commander informed of the enemy’s movement by 
periodically sending observation reports (through the lead) 
of the enemy’s location and orientation. The agent cannot 
observe its teammate because of terrain occlusions. 
However, the teammate periodically sends messages 
regarding its position. The teammate continuously scans the 
area to its front (Figure 1b) and sends reports to the agent 
when it observes the enemy. The teammate can reorient its 
view in response to orders from the agent. The agent can 
look at the environment (Figure 1c) or its map (Figure 1d).  

To motivate the reasoning capabilities when using 
multiple representations, consider how the agent makes 
decisions in this domain. Typically, a scout follows these 
steps after initial visual contact: (1) Deploy and report, (2) 
analyze the situation, and (3) choose and execute a course of 
action (U.S. Army 2002). Analysis involves reasoning about 
friendly and enemy locations and orientations, terrain, and 
obstacles. If the scout leader does not know the locations of 
all expected enemy, then he might hypothesize where other 
enemy entities are (Figure 1d). Note that the hypothesized 
enemy in Figure 1d is not the same as the actual situation in 
Figure 1a but rather an estimate based on the agent’s 
knowledge of how the enemy typically fights.  

Analysis involves visualizing the situation and mentally 
simulating alternatives. Using spatial imagery, an agent can 
imagine each observed entity’s map icon on its external 
map. If the agent is confident in the information, it can 
“write” it on the external map, in effect making it persist. As 
information changes the agent updates the map, keeping its 
perceived image of the situation up to date. Using the 
external map as perceptual background, the agent can then 
imagine key terrain (enemy goals), possible enemy paths, its 
viewpoint, and its teammate’s viewpoint. Using visual 
imagery to take advantage of explicit space representation in 
a depiction, the agent can imagine what portion of those 
viewpoints cover the possible enemy paths and then imagine 
alternative courses of action by simulating different 
viewpoints. Based on the analysis the agent decides if it 
should reorient itself, its teammate, or both. 

In summary, decision-making proceeds by combining 
perceptual representations with task specific knowledge to 
construct an imagined scene. Analysis emerges through the 
manipulation of symbolic, quantitative, and depictive 
representations. Retrieval of the resulting representations 
provides new information to the agent that it uses to reason 
and produce action in the environment. 
 

  
(a) Actual situation (b) Teammate’s view 

  
(c) Agent’s view (d) Agent’s perceived 

map/imagined situation 
Figure 1: Experimental Environment 

Architecture 
Soar and its Spatial-Visual Imagery (Soar+SVI) module are 
the two major components in our system (Figure 2). Soar 
encompasses the symbolic representation. SVI includes the 
quantitative and depictive representations. It encapsulates 
high-level visual perception and mental imagery processing.  

Soar’s symbolic memories include a declarative, short-
term memory (STM) and a procedural, long-term memory 
(LTM). The symbolic STM is a graph structure (Figure 2) 



representing the agent’s current state. Some symbols may 
represent an object (filled gray circle in Figure 2). These 
“visual-object” symbols emerge from the current perception 
or activation of a previously stored memory. They may be 
associated with non-visual symbols that augment the object 
with additional information (e.g., the object is an enemy 
scout). The visual-object symbol may have properties 
defining its explicit visual features and qualitative spatial 
relationships with other objects. Procedural LTM is a set of 
productions, some of which propose operators that a 
decision procedure selects for application. The application 
of an operator makes persistent changes to short-term 
memory and may send commands to a motor system, or, in 
SVI’s case, imagery processes. Processing occurs by 
iteratively proposing, selecting, and applying operators. 
 

 
Figure 2: Architectural overview with visual perceptual processing 
 

Within SVI, the Visual Buffer (bottom of Figure 2) is a 
depictive memory activated from bottom-up visual-
perception or top-down imagery processing. In contrast to 
sentential symbols, space is inherent in the representation 
and the encoding is strictly visual information. The 
depiction as a whole represents shape, size, orientation, 
location, and texture from a specific perspective. 
Computationally, it is a set of 2D bitmaps with at least one 
bitmap representing either the egocentrically perceived 
scene or an imagined scene from a specific viewpoint. The 
system creates additional bitmaps to support the processing. 

The Object Map (right side of Figure 2) maintains the 
quantitative spatial representation of objects in the currently 
perceived or imagined scene by fixing an object’s location, 
orientation, and size in space. The Object Map uses a scene-
graph data structure (Figure 3). The root node represents the 
perceived or imagined scene and children nodes are salient, 
visual objects. Figure 3 shows the number of visual objects 
to be N where N is hypothesized to be four to five based on 
working-memory capacity (Jonides et al., 2008). 
Intermediate nodes represent an object’s composition and 
contain translation, scaling, and rotation metrics to capture 
spatial relationships between objects. Leaf nodes represent 

shape (i.e. a three-dimensional mesh of vertices and indices) 
and texture to support rendering a bitmap. The structure is a 
graph because multiple leaf nodes may share shape and 
texture (e.g. a shared wheel).   A viewpoint facilitates the 
generation of a depiction from a particular perspective. 

Sentential, geometric algorithms are the basis for the 
computational processing that infers knowledge from this 
representation. The structure is sufficient for spatial 
reasoning between convex objects and simulating dynamical 
systems (Wintermute 2008). However, if reasoning requires 
specific shape or visual properties, a depictive 
representation is more appropriate. 

 

 
Figure 3: Object Map’s scene-graph and viewpoint data structures 

 
The remaining two memories in SVI are not associated 

with a particular representation but support reasoning 
indirectly. The Visual-Spatial STM (middle of Figure 2) is a 
shared memory between Soar and SVI. It is hierarchical 
with the root representing sets of extracted salient objects, 
spatial relationships, and visual features applying to the 
current scene. Each salient object may have subsequent 
levels in the hierarchy with its own feature, object, and 
spatial sets. Perceptual long-term memory (PLTM) is a 
container of prototypical objects where each object is a 
scene graph. A scene-graph in PLTM is distinct from the 
Object Map as the graph is not an instance in the current 
scene but rather a memory of an object’s shape, texture, and 
spatial configuration without a fixed frame of reference. 

Visual Perception 
Our modeling of visual perception, to include the separation 
between “what” and “where” pathways is theoretical. We 
include it since psychological evidence indicates that mental 
imagery and vision share similar mechanisms thereby 
constraining the architectural design. Our ultimate goal is to 
incorporate realistic perception in the architecture. 

A Refresher process activates the Visual Buffer from 
sensory stimulus (bottom right of Figure 2). Upon 
activation, a “Saliency” Inspector marks relevant objects in 
the current scene and creates a symbolic structure for each 
salient object in VS-STM.  Two parallel processes then 
initiate a more detailed inspection of the Visual Buffer, 
focusing on the marked objects. The “What” inspectors 
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extract features in support of recognition by matching 
features with shape and color in PLTM. Simultaneously, the 
“Where” inspectors extract the location, orientation, and 
size of the objects from the Visual Buffer and build the 
quantitative spatial representation in the Object Map. Both 
inspectors update the structures in VS-STM and symbolic 
results are sent to Soar where operators associate the input 
with existing knowledge (e.g. the object is an enemy). 

Spatial Imagery 
An agent uses spatial imagery by invoking an imagery 
operator (top right of Figure 2). To construct a spatial 
image, the agent can compose two visual-objects from 
PLTM or add a visual-object from PLTM to the scene. 
Specialized processing units within SVI respond to the 
specific imagery command (Figure 4). The Constructor 
receives the operator’s symbolic information and builds the 
quantitative representation in the Object Map by combining 
each object’s general shape from PLTM with qualitative 
spatial knowledge from Soar. In the scout domain, the agent 
continuously analyzes the situation by imagining the 
friendly, enemy, and obstacle locations and orientations. 

 

 
Figure 4:  Mental imagery processes 

 
The transform operator manipulates the Object Map’s 

quantitative representation through its Manipulator (Figure 
4). The manipulation may change the viewpoint or 
transform (i.e. translation, rotation, scaling) a specific 
object. In the scout domain, the agent dynamically updates 
specific objects when observing (either visually or via a 
teammate’s report) changes to spatial relationships. The 
agent may also imagine different situations, effectively 
simulating hypothesized scenarios, and infer the changed 
spatial relationships. For example, the agent modifies the 
orientation of imagined views to determine if its team can 
improve coverage of enemy routes. When the agent or its 
teammate loses visual contact with the enemy, the agent can 
simulate movement with knowledge of a vehicle’s velocity. 
From SVI’s perspective, the objects it is manipulating are 
general—task knowledge remains encoded in Soar. 

Visual Imagery  
If a depictive representation is required (e.g. to determine if 
the scout section has adequate visual coverage), the 
generate operator (Figure 4) initiates processing. The 
Refresher interprets the command and combines each 
object’s specific shape and texture from PLTM with the 
Object Map’s quantitative information to generate the 
bitmap in the Visual Buffer. Generation may render some or 
all of the visual objects in the Object Map and create one or 
more bitmaps to support visual reasoning. 

The VBManipulator transforms the images in the 
VisualBuffer using  either standard image processing  (e.g. 
edge detectors) or algorithms that take advantage of the 
topological structure and color using pixel-level rewrites 
(Furnas et al., 2000). Unlike sentential processing (e.g. 
Gaussian filters), pixel-level rewrites take advantage of the 
explicit topological structure and color of a bitmap. Similar 
to a production system, there are a set of rules with a left-
hand side (LHS) and a right-hand side (RHS). Rather than 
predicate symbols, however, the LHS conditions and RHS 
actions are depictive representations that operate on the 
shared image. The color and shape of each LHS depiction, 
determines a match rather than the sentential structure. 

Figure 5 illustrates an example of two depictive rules. The 
top rule is a 1x2 rule stating, “If there is a black pixel 
adjacent to a gray pixel then change the gray pixel to a 
white pixel.” Similarly, the bottom rule is a 2x2 rule that 
states, “If there is a black pixel diagonally adjacent to a gray 
pixel then change the gray pixel to a white pixel.” The 
asterisks represent wildcard values and a rule may specify 
alternative rotations (90, 180, 270 degrees) for matching. 
Each rule can have arbitrary shape and color and a set of 
these rules can represent a high-level task in Soar (e.g. find-
enemy-path).  Priorities enforce sequencing, and the 
processing iterates over the image while there are matches.   

 

 
Figure 5: Example pixel rewrite rules 

 
A way for the agent to analyze its team’s position is to 

imagine a hypothesized path from each enemy’s location to 
key terrain (Figure 6). The analysis should take into account 
the agent’s knowledge about the surrounding terrain and 
known obstacles. An algorithmic solution translated into a 
set of pixel rewrites is the following: 

(1) Mark all known obstacles and impassable terrain 
(known threshold values) with a color (yellow). Mark 
all other pixels gray. 

(2) Grow an iso-distance contour field of four colors 
avoiding any previously marked, barriers (Figure 6a). 

(3) Walk the contour field from source to sink, marking 
the path along the way (Figure 6b).  



After the imagined path(s) are marked, the agent can 
generate each scout’s view to determine if there is 
adequate coverage (Figure 7). 
 

  
(a) Distance field flood (b) Path finding 

Figure 6:  Demonstration of pixel-level rewrites  
 

 
Figure 7: Agent imagining coverage of an imagined enemy path 

 
After constructing and manipulating the representations, 

the agent can infer spatial and visual properties. The inspect 
operator (Figure 4) provides the symbolic query. For 
example, “what is the direction and distance between enemy 
scout-1 and the key terrain in the east” or “how much of the 
teammate’s view covers enemy-1’s hypothesized path 
(Figure 7)?”  The appropriate “What” or “Where” process 
interprets the query and returns the symbolic results to Soar 
as described for visual perception.  

The reasoning uses abstract mechanisms rather than 
problem specific annotations.  For example, “how much of 
the teammate’s view covers enemy-1’s hypothesized path?” 
proceeds as follows: 

 
(1) What is the topology between object-1 (the 

teammate’s view) and object-2 (the 
hypothesized path)?  The inspector provides a 
symbolic “overlaps” result and stores a shape 
feature (shape-1) representing the overlap in 
VS-STM (Figure 4). 

(2) What is the scalar size (i.e. length) of shape-1? 
SVI calculates and returns the size of shape-1. 

Functional Evaluation 
Extending a symbolic architecture with mental imagery 
mechanisms provides an agent with functional capability 
that the system cannot achieve without it. To evaluate this 
claim, we created three agents modeling the lead scout. The 
first agent (Soar+SVI) observes, analyzes, and decides on a 
course of action by using symbolic, quantitative spatial, and 
visual depictive representations. The second agent (Soar-
SVI) uses the same task knowledge as the first agent but 
reasons using strictly symbolic representations and 

processing in Soar. As a baseline, a third agent (Observer) 
and its teammate simply observe to their front and send 
reports without any attempt at re-positioning. 
 

 
Figure 8: Measure of information over time 

 
Figure 9: Number of reported observations 

 
There are two evaluation metrics. The first is the amount 

of information the commander receives on the enemy’s 
location over time (Figure 8). The second metric is the 
number of reported enemy observations (Figure 9). Each 
reflects an average of 30 trials. In Figure 8, the x-axis is the 
current time and the y-axis measures the amount of 
information per unit time with 1.0 signaling perfect 
information and –1.0 indicating no information. The 
measure of information is an average of all three enemy 
entities at simulation time, t, calculated as follows:  

 
        where: 

 

 
 (obsx,obsy) is the reported location of an entity at time, t and 
(actx,acty) is the actual location of an entity at time, t  

 

 

The agent receives a positive score for a given enemy if at 
simulation time, t, a reported enemy’s location is within a 
500 x 500 meter square area of the enemy’s actual location 
at that time. Otherwise, the information score is negative for 



with a minimum score of -1.0. The “Tracker” in Figure 8 
illustrates the amount of information a scout team provides 
if each scout observes one enemy at the beginning of the 
simulation and then “tracks” that entity to the simulation’s 
conclusion. Assuming no terrain occlusions, instantaneous 
message passing, and the third enemy not in vicinity of the 
tracked entities, the “Tracker” would receive an information 
score of (1.0 + 1.0 - 1.0) / 3 = 0.33 for each time unit. 

The results demonstrate that the Soar+SVI agent provides 
more information upon initial contact (the slope of its line in 
Figure 8 is steeper) and for a longer, sustained period. The 
reason is that the Soar+SVI agent is able to reposition its 
team more effectively as its analysis is more accurate. The 
Soar-SVI agent often under or overestimates adjustments 
resulting in the team missing critical observations.  

On average, the Soar+SVI agent sends more observation 
reports to the commander (Figure 9) indicating that the team 
has detected the enemy more frequently. The number of 
observation reports also shows that the agent is able to 
perform other cognitive functions (observe, send and 
receive reports) indicating that imagery is working in 
conjunction with the entire cognitive system. 

Conclusion 
In this paper, we demonstrate that augmenting a cognitive 
architecture with mental imagery mechanisms provides an 
agent with additional, task-independent capability. By 
combining symbolic, quantitative, and depictive 
representations, an agent improves its ability to reason in 
spatially and visually demanding environments. Our future 
work includes expanding individual architectural 
components—specifically by pushing the architecture closer 
to sensory input. To investigate this in more depth, we are 
exploring robotics to determine how cognitive architectures 
augmented with mental imagery can provide a robot with 
higher-level reasoning capabilities. Paramount in this 
exploration is an understanding of how our perceptual 
theory incorporates typical robotic sensors (e.g. laser, 
stereoscopic video, global positioning system, etc.) and how 
imagery may prime robotic effectors (motor imagery).  

References 
Anderson, J. R. (2007). How Can the Human Mind Occur in 

the Physical Universe? New York, NY: Oxford University 
Press. 

Barkowsky, T. (2002). Mental representation and processing 
of geographic knowledge - A computational approach. 
Berlin: Springer-Verlag. 

Barsalou, L. W. (1999). Perceptual symbol systems. 
Behavioral and Brain Sciences, 22, 577-660. 

Best, B.J., Lebiere, C., and Scarpinatto, C.K. (2002). A Model 
of Synthetic Opponents in MOUT Training Simulations 
using the ACT-R cognitive architecture. In Proceedings of 
the Eleventh Conference on Computer Generated Forces 
and Behavior Representation). Orlando, FL. 

Chandrasekaran, B. (2006). Multimodal Cognitive 
Architecture:  Making Perception More Central to 
Intelligent Behavior. AAAI National Conference on 
Artificial Intelligence, Boston, MA. 

Funt, B.V. (1976). “WHISPER: A computer implementation 
using analogues in reasoning,” PhD Thesis, The University 
of British Columbia, Vancouver, BC Canada. 

Furnas, G., Qu,Y., Shrivastava, S., and Peters, G. (2000). The 
Use of Intermediate Graphical Constructions in Problem 
Solving with Dynamic, Pixel-Level Diagrams. In 
Proceedings of the First International Conference on the 
Theory and Application of Diagrams:  Diagrams 2000, 
Edinburgh, Scotland, U.K. 

Glasgow, J., and Papadias, D. (1992). Computational imagery. 
Cognitive Science, 16, 355-394. 

Gelernter, H. (1959). Realization of a geometry theorem-
proving machine. Paper presented at the International 
Conference on Information Processing, Unesco, Paris. 

Gunzelmann, G., and Lyon, D. R. (2007). Mechanisms of 
human spatial competence. In T. Barkowsky, M. Knauff, G. 
Ligozat, & D. Montello (Eds.), Spatial Cognition V: 
Reasoning, Action, Interaction. Lecture Notes in Artificial 
Intelligence #4387 (pp. 288-307). Berlin, Germany: 
Springer-Verlag. 

Jaczkowski, J. J. (2002). Robotic technology integration for 
army ground vehicles. Aerospace and Electronic Systems 
Magazine, 17, 20-25. 

Jonides, J., Lewis, R.L., Nee, D.E., Lustig, C.A., Berman, 
M.G., and Moore, K.S. (2008). The Mind and Brain of 
Short-Term Memory. Annual Review of Psychology, 59, 
193-224. 

Kosslyn, S. M., Thompson, W. L., and Ganis, G. (2006). The 
Case for Mental Imagery. New York, New York: Oxford 
University Press. 

Kurup, U., and Chandrasekaran, B. (2007). Modeling 
Memories of Large-scale Space Using a Bimodal Cognitive 
Architecture. In Proceedings of the Eighth International 
Conference on Cognitive Modeling, Ann Arbor, MI. 

Laird, J.E. (2008). Extending the Soar Cognitive Architecture, 
Artificial General Intelligence Conference, 2008. 

Lathrop, S. D., and Laird, J. E. (2007). Towards Incorporating 
Visual Imagery into a Cognitive Architecture. In 
Proceedings of the Eighth International Conference on 
Cognitive Modeling, Ann Arbor, MI. 

Tabachneck-Schijf, H.J.M., Leonardo, A.M., and Simon, H.A. 
(1997). CaMeRa: A Computational Model of Multiple 
Representations. Cognitive Science, 21(3), 305-350. 

U.S. Army. (2002). Field Manual 3-20.98, Reconnaissance 
Platoon. Department of the Army, Washington D.C. 

Wintermute, S. and Laird, J. E. (2008). Bimodal Spatial 
Reasoning with Continuous Motion. Proceedings of the 
Twenty-Third AAAI Conference on Artificial Intelligence 
(AAAI-08), Chicago, Illinois 

Wray, R. E., Laird, J.E., Nuxoll, A., Stokes, D., and Kerfoot, 
A. (2005). Synthetic Adversaries for Urban Combat 
Training. AI Magazine, 26(3), 82-92. 


	Abstract
	Introduction
	Related Work
	Experimental Environment
	The U.S. Army’s work in developing robotic scouts for reconnaissance missions (Jaczkowski, 2002) motivates the evaluation environment. In support of this effort, we built a simulation modeling a section of two robotic scout vehicles that must cooperat...
	Architecture
	Visual Perception
	Spatial Imagery
	Visual Imagery

	Functional Evaluation
	Conclusion
	References

