
Hebbian Constraint on the Resolution of the Homunculus Fallacy Leads 

to a Network that Searches for Hidden Cause-Effect Relationships 

András Lőrincz 
 

Department of Information Systems, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, Hungary 1117 

 

 

 

Abstract 

We elaborate on a potential resolution of the homunculus 
fallacy that leads to a minimal and simple auto-associative 
recurrent ‘reconstruction network’ architecture. We insist 
on Hebbian constraint at each learning step executed in this 
network. We find that the hidden internal model enables 
searches for cause-effect relationships in the form of 
autoregressive models under certain conditions. We discuss 
the connection between hidden causes and Independent 
Subspace Analysis. We speculate that conscious experience 
is the result of competition between various learned hidden 
models for spatio-temporal reconstruction of ongoing 
effects of the detected hidden causes. 

Introduction  

The homunculus fallacy, an enigmatic point of artificial 
general intelligence, has been formulated by many (see 
e.g., Searle 1992). It says that representation is 
meaningless without „making sense of it‟, so the 
representation needs an interpreter. Then it continues with 
the questions: Where is this interpreter? What kind of 
representation is it using? This line of thoughts leads to an 
infinite regress. The problem is more than a philosophical 
issue. We are afraid that any model of declarative memory 
or a model of structures playing role in the formation of 
declarative memory could be questioned by the kind of 
arguments provided by the fallacy.  
 

Our standpoint is that the paradox stems from vaguely 

described procedure of „making sense’. The fallacy arises 

by saying that the internal representation should make 

sense. To the best of our knowledge, this formulation of 

the fallacy has not been questioned except in our previous 

works (see, Lőrincz et al. (2002), and references therein). 

We distinguish input and the representation of the input. In 

our formulation, the „input makes sense’, if the 

representation can produce an (almost) identical copy of it.  

This is possible, if the network has experienced and 

properly encoded similar inputs into the representation 

previously.  According to our approach, the internal 
representation interprets the input by (re)constructing it. 

This view is very similar to that of MacKay (1956) who 

emphasized analysis and synthesis in human thinking and 

to Horn‟s view (1977), who said that vision is inverse 

graphics.  

In the next section, we build an architecture by starting 
from an auto-associative network that has input and hidden 
representation. We will insist on Hebbian learning for each 
transformation, i.e., from input to representation and from 
representation to reconstructed input, of the network. We 
will have to introduce additional algorithms for proper 
functioning and will end up with a network that searches 
for cause-effect relationships. During this exercise we 
remain within the domain of linear approximations. In the 
discussion we provide an outlook to different extensions of 
the network, including non-linear networks, and 
probabilistic sparse spiking networks. The paper ends with 
conclusions. 

Making sense by reconstruction  

We start from the assumption that the representation 
„makes sense‟ of the input by producing a similar input. 
Thus, steps of making sense are: 

1. input  representation 
2. representation  reconstructed input 

If there is a good agreement between the input and the 
reconstructed input then the representation is appropriate 
and the input „makes sense‟. Observe that in this construct 
there is no place for another interpreter, unless it also has 
access to the input. However, there is place for a hierarchy, 
because the representation can serve as the input of other 
reconstruction networks that may integrate information 
from different sources. A linear reconstruction network is 
shown in Fig. 1. We note that if the model recalls a 
representation, then it can produce a reconstructed input in 
the absence of any real input. 
 
First, we shall deal with static inputs. Then we consider 
inputs that may change in time. 

The Case of Static Inputs 

We start from the constraints on the representation to 
reconstructed input transformation. The case depicted in 
Fig. 1 corresponds to Points 1 and 2 as described above. 
However, it requires a slight modification, because we 
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need to compare the input and the reconstructed input. This 
modification is shown in Fig. 2. 

Input  is compared with the reconstructed input 

 and produces the reconstruction error . 

Then, reconstruction error can be used to correct the 

representation. It is processed by bottom-up (BU) matrix 

 and updates the representation . 

Representation is processed by top-down (TD) matrix 

to produce the reconstructed input. The 

relaxation dynamics is: 

 

      (1) 

  (2) 

 

Note that update (1) requires a recurrent synapse system 

that represents the identity matrix I to add  to the 

update  at time  We will come 

back to this point later. 

 

Equation (2) is stable if  (  is positive 

definite). Then the architecture solves equation  

for h, so it effectively computes the (pseudo-)inverse, 

provided that the input is steady. Even for steady input, 

condition  should be fulfilled, so we have to train 

matrix . Training aims to reduce the reconstruction error 

and we get cost function  

and then the on-line tuning rule: 

 

         (3) 

 

where apostrophe denotes transpose and 

. 

 

 

Figure 2. : the input layer receives inhibitory 

(negative) feedback from the reconstructed input and 

becomes a comparator. The input layer holds the 

reconstruction error .  Arrow with solid circle: additive 

inhibition. 

 
 

We have to modify Fig. 2 to make this learning rule 

Hebbian (Fig. 3): 

 

 

Figure 3. Hebbian training for TD matrix  (Eq. (3)). 

 

 

Clearly, training of matrix  stops if , which 

includes the trivial solution, . Condition 

 is satisfied. The situation is somewhat more 

delicate if input may change by time. We treat this case 

below. 

Figure 1. : We say that input layer has n neurons. 

The activity of the  neuron is . : there are n 

neurons in the hidden representation layer. : 

input-to-representation, or bottom-up (BU) 

transformation.  is the  element of matrix : 

„synapse‟ or weight from neuron j to neuron i. : 

there are n neurons in the reconstructed input layer. 

: top-down (TD) transformation. 



The Case of Inputs that Change by Time 

If inputs change by time, then we can not reconstruct them, 
because of two reasons (i) there are delays in the 
reconstruction loop and (ii) the network may need 
considerable relaxation time if matrix  is not properly 
tuned. We have to include predictive approximations to 
overcome these obstacles. 
 
First, we introduce a predictive model. Second, we 
discover problems with Hebbian learning that we 
overcome by means of the representation. New Hebbian 
problems will constrain us that we solve by another 
rearrangement of the network. 
 

 

Figure 4. Hebbian learning for predictive matrix . 

 
For the sake of simplicity, we assume that the input is a 
first order autoregressive model (AR(1)):  
 

            (4) 

 
where  and its largest eigenvalue is smaller than 
1 (for stability) and  is the driving noise having 
normal distribution. Our approximations are Ĥ for matrix 
H, and  for input estimation, i.e., we estimate  as 
 

        (5) 

 
and the estimation error is 
 

       (6) 

 
and  is our estimation for noise n. Our cost function is 

 that leads to the 
Hebbian training rule: 
 

           (7) 

 
The network that can realize Eq. (7) is shown in Fig. 4.  
 
The network in Fig. 4 works as follows. Input  arrives 
to the two input layers and starts to propagate through 
matrix . At the next time instant input  arrives 
and the propagated input is subtracted, so we have 
activities  on the output end 
of  matrix  and the synapses were traversed by , 
satisfying the constraints of rule (7).  
 

There is a problem with the network of Fig. 4: we can not 
ensure identical inputs at different layers. This problem can 
be solved if we insert this new network into our previous 
two-layer architecture (Fig. 3). Having done this, for time 
varying inputs Eq. (3) assumes the form 
 

            (8) 

 
As we shall see, Eq. (8) enables the learning of a hidden 
model.  
 
Two layer network with hidden predictive matrix. We 
add a predictive model (matrix ) to the 
representation layer; it replaces the identity matrix I as 
required by non-steady inputs (Fig. 5). Now, we examine 
how this matrix could be trained. 
 
Equation  still holds, provided that matrix  – 
our estimated model – can compensate for the temporal 
changes. The model at the representation layer is: 
 

 ,        (9) 

 
where according to our notations, noise  should be an 
estimation of .  

 

Figure 5: Representation with predictive model. 

 
The question we have is whether we can learn a non-
inhibitory prdictive matrix  by Hebbian means or not. 
Although we can learn predictive matrices, see, e.g., 
Eq.a(7), but they would work as comparators.  
 
For model learning, the same trick does not work, we need 
other means. Our simple structure can be saved if we 
assume two-phase operation. It is important that two-phase 
operation fits neuronal networks (Buzsáki, 1989), so we 
are allowed to use this trick. We assume that  and 

 are transferred in Phase I and Phase II respectively 
by bottom-up matrix . Under this condition, training of 
predictive matrix  can be accomplished in Phase II: in 



Phase II, the output of matrix is , whereas it 
experiences input . The same quantities emerge 
when considering cost , i.e., 
the squared error  at time . Note, however, that 
training of matrix  is supervised and so matrix  can 
play an additive role. 

Discussion 

The resolution of the homunculus fallacy has been 
suggested in our previous works (see, e.g., Lőrincz et al. 
(2002), and references therein). Here we elaborated that 
work by more rigorous considerations on Hebbian 
learning.  We were led to a simple network that provides 
further insights into the „making sense‟ process:  
 
(1) The network discovers two components: (i) a 
deterministic process characterized by the predictive 
matrix and (ii) the driving noise of this deterministic 
process. One may say that the network discovers the causes 
(the driving noises) and the effects (the deterministic 
evolution of the driving noises). 
 
(2) The network builds up an internal model that can run 
without input. Assume that the network runs for  steps on 
its own 
 

         (10) 

 
and then it compares the result with the input  steps later: 
 

          (11) 

 
If the disagreement between the two quantities is small (if 

 that appears at the input layer is small), then the 
input process „makes sense‟ according to what has been 
learned.  
 
We note for the sake of arguments on consciousness that if 
the network runs for k time steps, then – according to the 
dimensional constraints – the network can be increased up 
to k pieces of parallel running temporal processes, each of 
them trying to reconstruct the input during the whole k 
time step history. The pseudo-inverse method is suitable to 
select the sub-network with the smallest reconstruction 
error over the k time steps. This sub-network makes the 
most sense according to history. 
 
(3) The same predictive network can be used for replaying 
temporal sequences, provided that the starting hidden 
representation is saved somewhere. 
 
The novelty of this work comes from the examination of 
Hebbian constraints on reconstruction networks. Neural 
networks with reconstruction capabilities, however, are not 
new; there is long history of such networks. 

Other works starting from similar thoughts 

There are many network models that have similar 
structure. These networks are typically more complex than 
the simple/minimal linear autoregressive network that we 
described here. There are similar networks that aim to 
model real neuronal architectures. The literature is huge; 
we can list only some of the most prominent works.  
 

To our best knowledge, the first neocortex related 

reconstruction network model that suggested approximate 

pseudo-inverse computation for information processing 

between neocortical areas was published by Kawato et al., 

(1993). It was called the forward-inverse model and 

modeled the reciprocal connections between visual 

neocortical areas. The motivation of the model was to 

connect regularization theories of computational vision 

(Poggio et al., 1985, Ballard et al., 1983) to neocortical 

structure and explain how multiple visual cortical areas are 

integrated to allow coherent scene perception. The 

computational model of the neocortex was extended by 

Rao and Ballard (Rao and Ballard, 1997, Rao and Ballard, 

1999), who suggested that neocortical sensory processing 

occurs in a hierarchy of Kalman filters. The Kalman filter 

model extends previous works into the temporal domain.  

 

Non-linear extensions include the so called recurrent 

neural networks that have non-linear recurrent collaterals 

at the representation layer. For a review on recurrent neural 

networks, see Jacobsson (2005). A particular recurrent 

network model with hidden layer is called Echo State 

Network (ESN, Jaeger, 2003). ESN – unlike to most 

models – is non-linear with strictly Hebbian learning. It 

does not assume two-phase operation. It is made efficient 

by a huge random recurrent network that forms the internal 

representation. 

 

Another type of networks with reconstruction flavor 

belongs to stochastic networks and is called generative 

model (see, e.g., (Hinton, 2007). An attempt that connects 

generative models with two phase operation appeared early 

(Hinton, 1995), but without details on Hebbian constraints. 

 

The Kalman filter model and the generative network model 

are the close relatives of the minimal architecture that we 

described here. They are more sophisticated, but Hebbian 

learning is so strict as in our minimal model.   

Extensions of reconstruction networks 

The role of the bottom-up matrix. It is intriguing that 

Hebbian learning did not provide constraints for the 
bottom-up matrix. Our proposal, that hidden models 

discover cause-effect relationships (see point (1) above), 

leads to the thought that the role of the bottom-up matrix is 

to help searches for causes. Causes – by definition – are 

independent, so we have to look for independent sources.  



This route is relevant if the noise is not normal, which the 

typical case for natural sources is. If non-normal sources 

are hidden and only their mixture is observed, then 

observed distribution may approximate a normal 

distribution, because of the d-central limit theorem. Then 

the following situation is achieved: 

 

1. Deterministic prediction can be subtracted from 

the observation under the assumption that the 

driving noise is close to normal distribution 

2. Independent sources can be estimated by 

independent subspace analysis (see, e.g., Cardoso 

(1998), Hyvarinen and Hoyer (2000)). For a 

review, see Szabó et al. (2007). 

3. The autoregressive processes in the independent 

subspaces can be learnt by supervisory training 

that overcomes the problem of non-normal 

distributions. We note: (a) the least mean square 

approach that we applied fits the normal 

distribution, (b) higher order autoregressive 

processes with moving averages can also be 

included into the representation (Szabó et. al, 

2007, Póczos et. al, 2007), although it is not yet 

known how to admit Hebbian constraints.  

4. It is unclear if Independent Subspace Analysis can 

be performed by Hebbian means or not. Efforts to 

find strictly Hebbian methods for the whole loop 

including the independent subspace analysis are in 

progress (Lőrincz et al., 2008a).  

 

The search for cause-effect dependencies can be related to 

the Infomax concept (Barlow, 1961, Linsker, 1988, Atick 

and Redlich, 1992, Bell and Sejnowski, 1995, Linsker, 

1997), because upon removing the temporal process, the 

search for the independent causes is analogous to the 

Infomax concept (Cardoso, 1997). However, the reasoning 

is different; here, the aim of independent subspace analysis 

is to find the causes that drive deterministic processes. 

 

Extensions of this simple architecture to ARMA(p,q) 

processes (Póczos et al., 2007), non-linear extensions 

(Jaeger, 2003), extensions with control and  reinforcement 

learning (Szita and Lőrincz, 2004, Szita et al., 2006) are 

possible. Overcomplete probabilistic sparse spiking 

extension of the reconstruction architecture has also been 

suggested (Lőrincz et al., 2008b) and this direction has 

promises for biologically plausible probabilistic spatio-

temporal extensions of the „making sense procedure‟ under 

Hebbian constraints.  

 
Outlook to a potential model for consciousness. It has 

been mentioned before that if the model runs without input 

for k steps, then the number of models can be multiplied by 

k, because the pseudo-inverse method can select the best 

candidate. There is a cost to pay: the best process can not 

be switched off arbitrarily often, it should be the best 

candidate that reconstructs k time steps. Such competition 

between models to represent the sensory information may 

explain certain aspects of consciousness, including rivalry 

situations, when perception is changing steadily, whereas 

the sensory information is steady.  

Conclusions 

We have shown that under Hebbian constraints, the 

resolution of the homunculus fallacy leads to a particular 

reconstruction network. The network is potentially the 

simplest in its structure, but not in its functioning: (i) it has 

a bottom-up, a top-down, and a predictive network, and it 

is linear, but (ii) it works in two separate phases.  

 

We have shown that the emerging network turns the 

philosophical infinite regress into a finite loop structure 

and this finite loop uncovers hidden cause-effect 

relationships. This is one way to interpret the making sense 

procedure of the „homunculus‟. The representation 

produces the next expected input from time-to-time and 

computes the difference between the input and this 

expected reconstructed input. We say that the input makes 

sense, if this difference is within the range of the expected 

noise.  Also, the network can run by itself as required if 

inputs are missing. 

 

We have found that constraints arising from the resolution 

of the fallacy leave the form of the bottom-up network 

open. However, the reconstruction network uncovers 

hidden deterministic processes and estimates the driving 

noise, the hidden causes. Causes are independent „by 

definition‟, so the network should work better if the 

bottom-up transformation is trained on the estimated noise 

according to Independent Subspace Analysis (ISA), which 

is provably non-combinatorial under certain circumstances 

(Póczos et al., 2007, Szabó et al., 2007). The concept of 

finding causes that drive deterministic processes leads to 

and takes advantage of a relative of ISA, the so called 

Infomax concept, which has been developed for modeling 

sensory information processing in the brain (Barlow 1961, 

Linsker 1988).  

 

We have speculated that competing models in 

reconstruction networks may provide a simple explanation 

for certain features of consciousness. This speculation can 

be taken further: the model hints that conscious experience 

may emerge as the result of distributed and self-

orchestrated competition amongst predictive models to 

reconstruct their common inputs over longer time intervals. 

This line of thoughts suggests to seek not (only) the 

conductor of the orchestra (see, e.g., Crick and Koch, 

2005), but the distributed selection algorithm triggered by 

unexpected independent causes as disclosed by 

reconstruction errors of competing reconstruction models. 
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